Vibrio fischeri siderophore production drives competitive exclusion during dual‐species growth

When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re‐uptake of siderophores, small molecule iron chelators, to sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2020-08, Vol.114 (2), p.244-261
Hauptverfasser: Eickhoff, Michaela J., Bassler, Bonnie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 2
container_start_page 244
container_title Molecular microbiology
container_volume 114
creator Eickhoff, Michaela J.
Bassler, Bonnie L.
description When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re‐uptake of siderophores, small molecule iron chelators, to scavenge iron. Siderophores provide fitness advantages to species that employ them by enhancing iron acquisition, and moreover, by denying iron to competitors incapable of using the siderophore–iron complex. Here, we show that cell‐free culture fluids from the marine bacterium Vibrio fischeri ES114 prevent the growth of other vibrio species. Mutagenesis reveals the aerobactin siderophore as the inhibitor. Our analysis reveals a gene, that we name aerE, encodes the aerobactin exporter, and LuxT is a transcriptional activator of aerobactin production. In co‐culture, under iron‐limiting conditions, aerobactin production allows V. fischeri ES114 to competitively exclude Vibrio harveyi, which does not possess aerobactin production and uptake genes. In contrast, V. fischeri ES114 mutants incapable of aerobactin production lose in competition with V. harveyi. Introduction of iutA, encoding the aerobactin receptor, together with fhuCDB, encoding the aerobactin importer are sufficient to convert V. harveyi into an “aerobactin cheater.” In multi‐species environments, bacteria often compete for limiting nutrients. We show that, in dual species co‐culture, production of the siderophore aerobactin by Vibrio fischeri ES114 enables it to scavenge iron and prevent the growth of a competing species by denying it iron. We characterize aerobactin biosynthesis, export, recognition, and import genes. We identify the activators of aerobactin production and we pinpoint the genes required to convert an aerobactin non‐producer into an aerobactin cheater.
doi_str_mv 10.1111/mmi.14509
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434433114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-a2094ffe6299b22b15bc726f79fe18bfdf3a1b724e4ed3ab6012b9807d23aacd3</originalsourceid><addsrcrecordid>eNp1kctO3TAQhq0KVA7QRV-gisSmLAK-5eJNpQpxk0BsCmLn2s74HKMkTu2Ey45H4Bl5EgwHEK1Ub0bWfPo0Mz9CXwneIentdp3bIbzA4hOaEVYWORVFvYJmWBQ4ZzW9XEPrMV5hTBgu2We0xigtBCP1DP2-cDo4n1kXzQKCy6JrIPhh4QNkQ_DNZEbn-6wJ7hpiZnw3wOjG9Mng1rRTfGlOwfXzVFT7eP8QBzAusfPgb8bFJlq1qo3w5bVuoPOD_V97R_nJ2eHx3s-T3HDORK4oFtxaKKkQmlJNCm0qWtpKWCC1to1liuiKcuDQMKVLTKgWNa4aypQyDdtAP5beYdIdNAb6MahWDsF1KtxJr5z8u9O7hZz7a1kVnHBKkuD7qyD4PxPEUXbpJtC2qgc_RUlZXZW85EQkdOsf9MpPoU_rScpZ2ocRwhO1vaRM8DEGsO_DECyfc5MpN_mSW2K_fZz-nXwLKgG7S-DGtXD3f5M8PT1eKp8AJ7umUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434433114</pqid></control><display><type>article</type><title>Vibrio fischeri siderophore production drives competitive exclusion during dual‐species growth</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Eickhoff, Michaela J. ; Bassler, Bonnie L.</creator><creatorcontrib>Eickhoff, Michaela J. ; Bassler, Bonnie L.</creatorcontrib><description>When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re‐uptake of siderophores, small molecule iron chelators, to scavenge iron. Siderophores provide fitness advantages to species that employ them by enhancing iron acquisition, and moreover, by denying iron to competitors incapable of using the siderophore–iron complex. Here, we show that cell‐free culture fluids from the marine bacterium Vibrio fischeri ES114 prevent the growth of other vibrio species. Mutagenesis reveals the aerobactin siderophore as the inhibitor. Our analysis reveals a gene, that we name aerE, encodes the aerobactin exporter, and LuxT is a transcriptional activator of aerobactin production. In co‐culture, under iron‐limiting conditions, aerobactin production allows V. fischeri ES114 to competitively exclude Vibrio harveyi, which does not possess aerobactin production and uptake genes. In contrast, V. fischeri ES114 mutants incapable of aerobactin production lose in competition with V. harveyi. Introduction of iutA, encoding the aerobactin receptor, together with fhuCDB, encoding the aerobactin importer are sufficient to convert V. harveyi into an “aerobactin cheater.” In multi‐species environments, bacteria often compete for limiting nutrients. We show that, in dual species co‐culture, production of the siderophore aerobactin by Vibrio fischeri ES114 enables it to scavenge iron and prevent the growth of a competing species by denying it iron. We characterize aerobactin biosynthesis, export, recognition, and import genes. We identify the activators of aerobactin production and we pinpoint the genes required to convert an aerobactin non‐producer into an aerobactin cheater.</description><identifier>ISSN: 0950-382X</identifier><identifier>ISSN: 1365-2958</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14509</identifier><identifier>PMID: 32259318</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Aerobactin ; Aliivibrio fischeri - metabolism ; Aquatic life ; Bacteria ; Bacterial Outer Membrane Proteins ; Bacterial Proteins - metabolism ; Biological Transport ; Cell culture ; Chelating agents ; competition ; genes ; Hydroxamic Acids ; Iron ; Iron - metabolism ; Marine environment ; Mutagenesis ; Nutrients ; regulator ; siderophore ; Siderophores ; Siderophores - genetics ; Siderophores - metabolism ; Siderophores - physiology ; Species ; Transcription ; Vibrio fischeri ; Waterborne diseases</subject><ispartof>Molecular microbiology, 2020-08, Vol.114 (2), p.244-261</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-a2094ffe6299b22b15bc726f79fe18bfdf3a1b724e4ed3ab6012b9807d23aacd3</citedby><cites>FETCH-LOGICAL-c4439-a2094ffe6299b22b15bc726f79fe18bfdf3a1b724e4ed3ab6012b9807d23aacd3</cites><orcidid>0000-0002-0043-746X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.14509$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.14509$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32259318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eickhoff, Michaela J.</creatorcontrib><creatorcontrib>Bassler, Bonnie L.</creatorcontrib><title>Vibrio fischeri siderophore production drives competitive exclusion during dual‐species growth</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re‐uptake of siderophores, small molecule iron chelators, to scavenge iron. Siderophores provide fitness advantages to species that employ them by enhancing iron acquisition, and moreover, by denying iron to competitors incapable of using the siderophore–iron complex. Here, we show that cell‐free culture fluids from the marine bacterium Vibrio fischeri ES114 prevent the growth of other vibrio species. Mutagenesis reveals the aerobactin siderophore as the inhibitor. Our analysis reveals a gene, that we name aerE, encodes the aerobactin exporter, and LuxT is a transcriptional activator of aerobactin production. In co‐culture, under iron‐limiting conditions, aerobactin production allows V. fischeri ES114 to competitively exclude Vibrio harveyi, which does not possess aerobactin production and uptake genes. In contrast, V. fischeri ES114 mutants incapable of aerobactin production lose in competition with V. harveyi. Introduction of iutA, encoding the aerobactin receptor, together with fhuCDB, encoding the aerobactin importer are sufficient to convert V. harveyi into an “aerobactin cheater.” In multi‐species environments, bacteria often compete for limiting nutrients. We show that, in dual species co‐culture, production of the siderophore aerobactin by Vibrio fischeri ES114 enables it to scavenge iron and prevent the growth of a competing species by denying it iron. We characterize aerobactin biosynthesis, export, recognition, and import genes. We identify the activators of aerobactin production and we pinpoint the genes required to convert an aerobactin non‐producer into an aerobactin cheater.</description><subject>Aerobactin</subject><subject>Aliivibrio fischeri - metabolism</subject><subject>Aquatic life</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Cell culture</subject><subject>Chelating agents</subject><subject>competition</subject><subject>genes</subject><subject>Hydroxamic Acids</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Marine environment</subject><subject>Mutagenesis</subject><subject>Nutrients</subject><subject>regulator</subject><subject>siderophore</subject><subject>Siderophores</subject><subject>Siderophores - genetics</subject><subject>Siderophores - metabolism</subject><subject>Siderophores - physiology</subject><subject>Species</subject><subject>Transcription</subject><subject>Vibrio fischeri</subject><subject>Waterborne diseases</subject><issn>0950-382X</issn><issn>1365-2958</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctO3TAQhq0KVA7QRV-gisSmLAK-5eJNpQpxk0BsCmLn2s74HKMkTu2Ey45H4Bl5EgwHEK1Ub0bWfPo0Mz9CXwneIentdp3bIbzA4hOaEVYWORVFvYJmWBQ4ZzW9XEPrMV5hTBgu2We0xigtBCP1DP2-cDo4n1kXzQKCy6JrIPhh4QNkQ_DNZEbn-6wJ7hpiZnw3wOjG9Mng1rRTfGlOwfXzVFT7eP8QBzAusfPgb8bFJlq1qo3w5bVuoPOD_V97R_nJ2eHx3s-T3HDORK4oFtxaKKkQmlJNCm0qWtpKWCC1to1liuiKcuDQMKVLTKgWNa4aypQyDdtAP5beYdIdNAb6MahWDsF1KtxJr5z8u9O7hZz7a1kVnHBKkuD7qyD4PxPEUXbpJtC2qgc_RUlZXZW85EQkdOsf9MpPoU_rScpZ2ocRwhO1vaRM8DEGsO_DECyfc5MpN_mSW2K_fZz-nXwLKgG7S-DGtXD3f5M8PT1eKp8AJ7umUA</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Eickhoff, Michaela J.</creator><creator>Bassler, Bonnie L.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0043-746X</orcidid></search><sort><creationdate>202008</creationdate><title>Vibrio fischeri siderophore production drives competitive exclusion during dual‐species growth</title><author>Eickhoff, Michaela J. ; Bassler, Bonnie L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-a2094ffe6299b22b15bc726f79fe18bfdf3a1b724e4ed3ab6012b9807d23aacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerobactin</topic><topic>Aliivibrio fischeri - metabolism</topic><topic>Aquatic life</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Cell culture</topic><topic>Chelating agents</topic><topic>competition</topic><topic>genes</topic><topic>Hydroxamic Acids</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Marine environment</topic><topic>Mutagenesis</topic><topic>Nutrients</topic><topic>regulator</topic><topic>siderophore</topic><topic>Siderophores</topic><topic>Siderophores - genetics</topic><topic>Siderophores - metabolism</topic><topic>Siderophores - physiology</topic><topic>Species</topic><topic>Transcription</topic><topic>Vibrio fischeri</topic><topic>Waterborne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eickhoff, Michaela J.</creatorcontrib><creatorcontrib>Bassler, Bonnie L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eickhoff, Michaela J.</au><au>Bassler, Bonnie L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibrio fischeri siderophore production drives competitive exclusion during dual‐species growth</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2020-08</date><risdate>2020</risdate><volume>114</volume><issue>2</issue><spage>244</spage><epage>261</epage><pages>244-261</pages><issn>0950-382X</issn><issn>1365-2958</issn><eissn>1365-2958</eissn><abstract>When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re‐uptake of siderophores, small molecule iron chelators, to scavenge iron. Siderophores provide fitness advantages to species that employ them by enhancing iron acquisition, and moreover, by denying iron to competitors incapable of using the siderophore–iron complex. Here, we show that cell‐free culture fluids from the marine bacterium Vibrio fischeri ES114 prevent the growth of other vibrio species. Mutagenesis reveals the aerobactin siderophore as the inhibitor. Our analysis reveals a gene, that we name aerE, encodes the aerobactin exporter, and LuxT is a transcriptional activator of aerobactin production. In co‐culture, under iron‐limiting conditions, aerobactin production allows V. fischeri ES114 to competitively exclude Vibrio harveyi, which does not possess aerobactin production and uptake genes. In contrast, V. fischeri ES114 mutants incapable of aerobactin production lose in competition with V. harveyi. Introduction of iutA, encoding the aerobactin receptor, together with fhuCDB, encoding the aerobactin importer are sufficient to convert V. harveyi into an “aerobactin cheater.” In multi‐species environments, bacteria often compete for limiting nutrients. We show that, in dual species co‐culture, production of the siderophore aerobactin by Vibrio fischeri ES114 enables it to scavenge iron and prevent the growth of a competing species by denying it iron. We characterize aerobactin biosynthesis, export, recognition, and import genes. We identify the activators of aerobactin production and we pinpoint the genes required to convert an aerobactin non‐producer into an aerobactin cheater.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32259318</pmid><doi>10.1111/mmi.14509</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0043-746X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2020-08, Vol.114 (2), p.244-261
issn 0950-382X
1365-2958
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541421
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals
subjects Aerobactin
Aliivibrio fischeri - metabolism
Aquatic life
Bacteria
Bacterial Outer Membrane Proteins
Bacterial Proteins - metabolism
Biological Transport
Cell culture
Chelating agents
competition
genes
Hydroxamic Acids
Iron
Iron - metabolism
Marine environment
Mutagenesis
Nutrients
regulator
siderophore
Siderophores
Siderophores - genetics
Siderophores - metabolism
Siderophores - physiology
Species
Transcription
Vibrio fischeri
Waterborne diseases
title Vibrio fischeri siderophore production drives competitive exclusion during dual‐species growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibrio%20fischeri%20siderophore%20production%20drives%20competitive%20exclusion%20during%20dual%E2%80%90species%20growth&rft.jtitle=Molecular%20microbiology&rft.au=Eickhoff,%20Michaela%20J.&rft.date=2020-08&rft.volume=114&rft.issue=2&rft.spage=244&rft.epage=261&rft.pages=244-261&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14509&rft_dat=%3Cproquest_pubme%3E2434433114%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434433114&rft_id=info:pmid/32259318&rfr_iscdi=true