Elastic rate coefficients for Li+H2 collisions in the calibration of a cold-atom vacuum standard

Ongoing efforts at the National Institute of Standards and Technology in creating a cold-atom vacuum standard device have prompted theoretical investigations of atom-molecule collision processes that characterize its operation. Such a device will operate as a primary standard for the ultrahigh-vacuu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2019-04, Vol.99 (4)
Hauptverfasser: Makrides, Constantinos, Barker, Daniel S., Fedchak, James A., Scherschligt, Julia, Eckel, Stephen, Tiesinga, Eite
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. A
container_volume 99
creator Makrides, Constantinos
Barker, Daniel S.
Fedchak, James A.
Scherschligt, Julia
Eckel, Stephen
Tiesinga, Eite
description Ongoing efforts at the National Institute of Standards and Technology in creating a cold-atom vacuum standard device have prompted theoretical investigations of atom-molecule collision processes that characterize its operation. Such a device will operate as a primary standard for the ultrahigh-vacuum and extreme-high-vacuum regimes. This device operates by relating loss of ultracold lithium atoms from a conservative trap by collisions with ambient atoms and molecules to the background density and thus pressure through the ideal gas law. The predominant background constituent in these environments is molecular hydrogen H 2 . We compute the relevant Li+H 2 Born-Oppenheimer potential energy surface, paying special attention to its uncertainty. Coupled-channel calculations are then used to obtain total rate coefficients, which include momentum-changing elastic and inelastic processes. We find that inelastic rotational quenching of H 2 is negligible near room temperature. For a ( T = 300)-K gas of H 2 and 1.0- μ K gas of Li atoms prepared in a single hyperfine state, the total rate coefficients are 6.0(1) × 10 −9 cm 3 /s for both 6 Li and 7 Li isotopes, where the number in parentheses corresponds to a one-standard-deviation combined statistical and systematic uncertainty. We find that a 10-K increase in the H 2 temperature leads to a 1.9% increase in the rate coefficients for both isotopes. For Li temperatures up to 100 μ K, changes are negligible. Finally, a semiclassical Born approximation significantly overestimates the rate coefficients. The difference is at least ten times the uncertainty of the coupled-channel result.
doi_str_mv 10.1103/PhysRevA.99.042704
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7540224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_7540224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-dbb2904261dd5348cf44ab34feef2683788780e75a515881c11146978d102f5c3</originalsourceid><addsrcrecordid>eNpVj0tLAzEUhYMoVmr_gKvsZWqek2QjlFKtUFBE12MmDxuZmZRJWui_N0URXN3LuedczgfADUZzjBG9e9ke06s7LOZKzREjArEzcEVYrSqlKDv_20k9AbOUvhBCmCtV0_oSTChFlAopr8DHqtMpBwNHnR000XkfTHBDTtDHEW7C7ZoUuetCCnFIMAwwb4tRd6EtkaLB6KE-WWylc-zhQZv9vocp68Hq0V6DC6-75Ga_cwreH1Zvy3W1eX58Wi42lSFI5Mq2LVGFo8bWcsqk8YzpljLvnCe1PJUVEjnBNcdcSmwwxgVQSIsR8dzQKbj_-bvbt72zpiCMumt2Y-j1eGyiDs3_yxC2zWc8NIIzRAij32yGZTI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elastic rate coefficients for Li+H2 collisions in the calibration of a cold-atom vacuum standard</title><source>American Physical Society Journals</source><creator>Makrides, Constantinos ; Barker, Daniel S. ; Fedchak, James A. ; Scherschligt, Julia ; Eckel, Stephen ; Tiesinga, Eite</creator><creatorcontrib>Makrides, Constantinos ; Barker, Daniel S. ; Fedchak, James A. ; Scherschligt, Julia ; Eckel, Stephen ; Tiesinga, Eite</creatorcontrib><description>Ongoing efforts at the National Institute of Standards and Technology in creating a cold-atom vacuum standard device have prompted theoretical investigations of atom-molecule collision processes that characterize its operation. Such a device will operate as a primary standard for the ultrahigh-vacuum and extreme-high-vacuum regimes. This device operates by relating loss of ultracold lithium atoms from a conservative trap by collisions with ambient atoms and molecules to the background density and thus pressure through the ideal gas law. The predominant background constituent in these environments is molecular hydrogen H 2 . We compute the relevant Li+H 2 Born-Oppenheimer potential energy surface, paying special attention to its uncertainty. Coupled-channel calculations are then used to obtain total rate coefficients, which include momentum-changing elastic and inelastic processes. We find that inelastic rotational quenching of H 2 is negligible near room temperature. For a ( T = 300)-K gas of H 2 and 1.0- μ K gas of Li atoms prepared in a single hyperfine state, the total rate coefficients are 6.0(1) × 10 −9 cm 3 /s for both 6 Li and 7 Li isotopes, where the number in parentheses corresponds to a one-standard-deviation combined statistical and systematic uncertainty. We find that a 10-K increase in the H 2 temperature leads to a 1.9% increase in the rate coefficients for both isotopes. For Li temperatures up to 100 μ K, changes are negligible. Finally, a semiclassical Born approximation significantly overestimates the rate coefficients. The difference is at least ten times the uncertainty of the coupled-channel result.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.99.042704</identifier><identifier>PMID: 33033788</identifier><language>eng</language><ispartof>Physical review. A, 2019-04, Vol.99 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-dbb2904261dd5348cf44ab34feef2683788780e75a515881c11146978d102f5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Makrides, Constantinos</creatorcontrib><creatorcontrib>Barker, Daniel S.</creatorcontrib><creatorcontrib>Fedchak, James A.</creatorcontrib><creatorcontrib>Scherschligt, Julia</creatorcontrib><creatorcontrib>Eckel, Stephen</creatorcontrib><creatorcontrib>Tiesinga, Eite</creatorcontrib><title>Elastic rate coefficients for Li+H2 collisions in the calibration of a cold-atom vacuum standard</title><title>Physical review. A</title><description>Ongoing efforts at the National Institute of Standards and Technology in creating a cold-atom vacuum standard device have prompted theoretical investigations of atom-molecule collision processes that characterize its operation. Such a device will operate as a primary standard for the ultrahigh-vacuum and extreme-high-vacuum regimes. This device operates by relating loss of ultracold lithium atoms from a conservative trap by collisions with ambient atoms and molecules to the background density and thus pressure through the ideal gas law. The predominant background constituent in these environments is molecular hydrogen H 2 . We compute the relevant Li+H 2 Born-Oppenheimer potential energy surface, paying special attention to its uncertainty. Coupled-channel calculations are then used to obtain total rate coefficients, which include momentum-changing elastic and inelastic processes. We find that inelastic rotational quenching of H 2 is negligible near room temperature. For a ( T = 300)-K gas of H 2 and 1.0- μ K gas of Li atoms prepared in a single hyperfine state, the total rate coefficients are 6.0(1) × 10 −9 cm 3 /s for both 6 Li and 7 Li isotopes, where the number in parentheses corresponds to a one-standard-deviation combined statistical and systematic uncertainty. We find that a 10-K increase in the H 2 temperature leads to a 1.9% increase in the rate coefficients for both isotopes. For Li temperatures up to 100 μ K, changes are negligible. Finally, a semiclassical Born approximation significantly overestimates the rate coefficients. The difference is at least ten times the uncertainty of the coupled-channel result.</description><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVj0tLAzEUhYMoVmr_gKvsZWqek2QjlFKtUFBE12MmDxuZmZRJWui_N0URXN3LuedczgfADUZzjBG9e9ke06s7LOZKzREjArEzcEVYrSqlKDv_20k9AbOUvhBCmCtV0_oSTChFlAopr8DHqtMpBwNHnR000XkfTHBDTtDHEW7C7ZoUuetCCnFIMAwwb4tRd6EtkaLB6KE-WWylc-zhQZv9vocp68Hq0V6DC6-75Ga_cwreH1Zvy3W1eX58Wi42lSFI5Mq2LVGFo8bWcsqk8YzpljLvnCe1PJUVEjnBNcdcSmwwxgVQSIsR8dzQKbj_-bvbt72zpiCMumt2Y-j1eGyiDs3_yxC2zWc8NIIzRAij32yGZTI</recordid><startdate>20190429</startdate><enddate>20190429</enddate><creator>Makrides, Constantinos</creator><creator>Barker, Daniel S.</creator><creator>Fedchak, James A.</creator><creator>Scherschligt, Julia</creator><creator>Eckel, Stephen</creator><creator>Tiesinga, Eite</creator><scope>5PM</scope></search><sort><creationdate>20190429</creationdate><title>Elastic rate coefficients for Li+H2 collisions in the calibration of a cold-atom vacuum standard</title><author>Makrides, Constantinos ; Barker, Daniel S. ; Fedchak, James A. ; Scherschligt, Julia ; Eckel, Stephen ; Tiesinga, Eite</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-dbb2904261dd5348cf44ab34feef2683788780e75a515881c11146978d102f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makrides, Constantinos</creatorcontrib><creatorcontrib>Barker, Daniel S.</creatorcontrib><creatorcontrib>Fedchak, James A.</creatorcontrib><creatorcontrib>Scherschligt, Julia</creatorcontrib><creatorcontrib>Eckel, Stephen</creatorcontrib><creatorcontrib>Tiesinga, Eite</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makrides, Constantinos</au><au>Barker, Daniel S.</au><au>Fedchak, James A.</au><au>Scherschligt, Julia</au><au>Eckel, Stephen</au><au>Tiesinga, Eite</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic rate coefficients for Li+H2 collisions in the calibration of a cold-atom vacuum standard</atitle><jtitle>Physical review. A</jtitle><date>2019-04-29</date><risdate>2019</risdate><volume>99</volume><issue>4</issue><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>Ongoing efforts at the National Institute of Standards and Technology in creating a cold-atom vacuum standard device have prompted theoretical investigations of atom-molecule collision processes that characterize its operation. Such a device will operate as a primary standard for the ultrahigh-vacuum and extreme-high-vacuum regimes. This device operates by relating loss of ultracold lithium atoms from a conservative trap by collisions with ambient atoms and molecules to the background density and thus pressure through the ideal gas law. The predominant background constituent in these environments is molecular hydrogen H 2 . We compute the relevant Li+H 2 Born-Oppenheimer potential energy surface, paying special attention to its uncertainty. Coupled-channel calculations are then used to obtain total rate coefficients, which include momentum-changing elastic and inelastic processes. We find that inelastic rotational quenching of H 2 is negligible near room temperature. For a ( T = 300)-K gas of H 2 and 1.0- μ K gas of Li atoms prepared in a single hyperfine state, the total rate coefficients are 6.0(1) × 10 −9 cm 3 /s for both 6 Li and 7 Li isotopes, where the number in parentheses corresponds to a one-standard-deviation combined statistical and systematic uncertainty. We find that a 10-K increase in the H 2 temperature leads to a 1.9% increase in the rate coefficients for both isotopes. For Li temperatures up to 100 μ K, changes are negligible. Finally, a semiclassical Born approximation significantly overestimates the rate coefficients. The difference is at least ten times the uncertainty of the coupled-channel result.</abstract><pmid>33033788</pmid><doi>10.1103/PhysRevA.99.042704</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2019-04, Vol.99 (4)
issn 2469-9926
2469-9934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7540224
source American Physical Society Journals
title Elastic rate coefficients for Li+H2 collisions in the calibration of a cold-atom vacuum standard
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20rate%20coefficients%20for%20Li+H2%20collisions%20in%20the%20calibration%20of%20a%20cold-atom%20vacuum%20standard&rft.jtitle=Physical%20review.%20A&rft.au=Makrides,%20Constantinos&rft.date=2019-04-29&rft.volume=99&rft.issue=4&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.99.042704&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_7540224%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33033788&rfr_iscdi=true