Comprehensive 3D‐RISM analysis of the hydration of small molecule binding sites in ligand‐free protein structures
Hydration is a critical factor in the ligand binding process. Herein, to examine the hydration states of ligand binding sites, the three‐dimensional distribution function for the water oxygen site, gO(r), is computed for 3,706 ligand‐free protein structures based on the corresponding small molecule–...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2020-10, Vol.41 (28), p.2406-2419 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2419 |
---|---|
container_issue | 28 |
container_start_page | 2406 |
container_title | Journal of computational chemistry |
container_volume | 41 |
creator | Yoshidome, Takashi Ikeguchi, Mitsunori Ohta, Masateru |
description | Hydration is a critical factor in the ligand binding process. Herein, to examine the hydration states of ligand binding sites, the three‐dimensional distribution function for the water oxygen site, gO(r), is computed for 3,706 ligand‐free protein structures based on the corresponding small molecule–protein complexes using the 3D‐RISM theory. For crystallographic waters (CWs) close to the ligand, gO(r) reveals that several CWs are stabilized by interaction networks formed between the ligand, CW, and protein. Based on the gO(r) for the crystallographic binding pose of the ligand, hydrogen bond interactions are dominant in the highly hydrated regions while weak interactions such as CH‐O are dominant in the moderately hydrated regions. The polar heteroatoms of the ligand occupy the highly hydrated and moderately hydrated regions in the crystallographic (correct) and wrongly docked (incorrect) poses, respectively. Thus, the gO(r) of polar heteroatoms may be used to distinguish the correct binding poses.
The hydration states of ligand binding sites are comprehensively analyzed using a theory of solvation. An analysis of the hydration states at the positions of ligand heavy atoms indicates that the polar heteroatoms of the ligand tend to occupy highly hydrated regions in the correct ligand poses and moderately hydrated regions in the incorrect ligand poses, suggesting a way to distinguish these two poses. |
doi_str_mv | 10.1002/jcc.26406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7540010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442582537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5096-bdc3bf79e8754b2221180c33eec99ee6c951b3c9dc71c027366382f2fcaa5afd3</originalsourceid><addsrcrecordid>eNp1kUlOHDEUhq0IFBqSRS4QWWKVRYOHcg2bSFGFUaBIGaTsLJfrVbdbLruxq0C94wickZPgpgHBgpWl50_fG36EvlByQAlhhwutD1iekfwDmlBS5dOqLP5voQmhFZuWuaA7aDfGBSGEizz7iHY4K6lghE7QWPt-GWAOLpprwPzn_e3d77M_l1g5ZVfRROw7PMwBz1dtUIPxbl2IvbIW996CHi3gxrjWuBmOZoCIjcPWzJRrk6oLAHgZ_ACpGocw6mEMED-h7U7ZCJ-f3j307_job306vfh1clb_uJhqsV6jaTVvuqKCshBZwxijtCSacwBdVQC5rgRtuK5aXVBNWMHznJesY51WSqiu5Xvo-8a7HJseWg1uCMrKZTC9CivplZFvf5yZy5m_lqkfIZQkwf6TIPirEeIgF34M6TRRsixjomSCF4n6tqF08DEG6F46UCLXCcmUkHxMKLFfX4_0Qj5HkoDDDXBjLKzeN8nzut4oHwAdEZ86</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442582537</pqid></control><display><type>article</type><title>Comprehensive 3D‐RISM analysis of the hydration of small molecule binding sites in ligand‐free protein structures</title><source>Access via Wiley Online Library</source><creator>Yoshidome, Takashi ; Ikeguchi, Mitsunori ; Ohta, Masateru</creator><creatorcontrib>Yoshidome, Takashi ; Ikeguchi, Mitsunori ; Ohta, Masateru</creatorcontrib><description>Hydration is a critical factor in the ligand binding process. Herein, to examine the hydration states of ligand binding sites, the three‐dimensional distribution function for the water oxygen site, gO(r), is computed for 3,706 ligand‐free protein structures based on the corresponding small molecule–protein complexes using the 3D‐RISM theory. For crystallographic waters (CWs) close to the ligand, gO(r) reveals that several CWs are stabilized by interaction networks formed between the ligand, CW, and protein. Based on the gO(r) for the crystallographic binding pose of the ligand, hydrogen bond interactions are dominant in the highly hydrated regions while weak interactions such as CH‐O are dominant in the moderately hydrated regions. The polar heteroatoms of the ligand occupy the highly hydrated and moderately hydrated regions in the crystallographic (correct) and wrongly docked (incorrect) poses, respectively. Thus, the gO(r) of polar heteroatoms may be used to distinguish the correct binding poses.
The hydration states of ligand binding sites are comprehensively analyzed using a theory of solvation. An analysis of the hydration states at the positions of ligand heavy atoms indicates that the polar heteroatoms of the ligand tend to occupy highly hydrated regions in the correct ligand poses and moderately hydrated regions in the incorrect ligand poses, suggesting a way to distinguish these two poses.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.26406</identifier><identifier>PMID: 32815201</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Binding sites ; Crystallography ; Distribution functions ; distribution functions of water ; Hydration ; hydration state ; Hydrogen bonds ; ligand binding ; Ligands ; Proteins ; statistical mechanical theory of solvation</subject><ispartof>Journal of computational chemistry, 2020-10, Vol.41 (28), p.2406-2419</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5096-bdc3bf79e8754b2221180c33eec99ee6c951b3c9dc71c027366382f2fcaa5afd3</citedby><cites>FETCH-LOGICAL-c5096-bdc3bf79e8754b2221180c33eec99ee6c951b3c9dc71c027366382f2fcaa5afd3</cites><orcidid>0000-0001-7407-1942 ; 0000-0002-6580-7185 ; 0000-0003-3199-6931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.26406$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.26406$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32815201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshidome, Takashi</creatorcontrib><creatorcontrib>Ikeguchi, Mitsunori</creatorcontrib><creatorcontrib>Ohta, Masateru</creatorcontrib><title>Comprehensive 3D‐RISM analysis of the hydration of small molecule binding sites in ligand‐free protein structures</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Hydration is a critical factor in the ligand binding process. Herein, to examine the hydration states of ligand binding sites, the three‐dimensional distribution function for the water oxygen site, gO(r), is computed for 3,706 ligand‐free protein structures based on the corresponding small molecule–protein complexes using the 3D‐RISM theory. For crystallographic waters (CWs) close to the ligand, gO(r) reveals that several CWs are stabilized by interaction networks formed between the ligand, CW, and protein. Based on the gO(r) for the crystallographic binding pose of the ligand, hydrogen bond interactions are dominant in the highly hydrated regions while weak interactions such as CH‐O are dominant in the moderately hydrated regions. The polar heteroatoms of the ligand occupy the highly hydrated and moderately hydrated regions in the crystallographic (correct) and wrongly docked (incorrect) poses, respectively. Thus, the gO(r) of polar heteroatoms may be used to distinguish the correct binding poses.
The hydration states of ligand binding sites are comprehensively analyzed using a theory of solvation. An analysis of the hydration states at the positions of ligand heavy atoms indicates that the polar heteroatoms of the ligand tend to occupy highly hydrated regions in the correct ligand poses and moderately hydrated regions in the incorrect ligand poses, suggesting a way to distinguish these two poses.</description><subject>Binding sites</subject><subject>Crystallography</subject><subject>Distribution functions</subject><subject>distribution functions of water</subject><subject>Hydration</subject><subject>hydration state</subject><subject>Hydrogen bonds</subject><subject>ligand binding</subject><subject>Ligands</subject><subject>Proteins</subject><subject>statistical mechanical theory of solvation</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kUlOHDEUhq0IFBqSRS4QWWKVRYOHcg2bSFGFUaBIGaTsLJfrVbdbLruxq0C94wickZPgpgHBgpWl50_fG36EvlByQAlhhwutD1iekfwDmlBS5dOqLP5voQmhFZuWuaA7aDfGBSGEizz7iHY4K6lghE7QWPt-GWAOLpprwPzn_e3d77M_l1g5ZVfRROw7PMwBz1dtUIPxbl2IvbIW996CHi3gxrjWuBmOZoCIjcPWzJRrk6oLAHgZ_ACpGocw6mEMED-h7U7ZCJ-f3j307_job306vfh1clb_uJhqsV6jaTVvuqKCshBZwxijtCSacwBdVQC5rgRtuK5aXVBNWMHznJesY51WSqiu5Xvo-8a7HJseWg1uCMrKZTC9CivplZFvf5yZy5m_lqkfIZQkwf6TIPirEeIgF34M6TRRsixjomSCF4n6tqF08DEG6F46UCLXCcmUkHxMKLFfX4_0Qj5HkoDDDXBjLKzeN8nzut4oHwAdEZ86</recordid><startdate>20201030</startdate><enddate>20201030</enddate><creator>Yoshidome, Takashi</creator><creator>Ikeguchi, Mitsunori</creator><creator>Ohta, Masateru</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7407-1942</orcidid><orcidid>https://orcid.org/0000-0002-6580-7185</orcidid><orcidid>https://orcid.org/0000-0003-3199-6931</orcidid></search><sort><creationdate>20201030</creationdate><title>Comprehensive 3D‐RISM analysis of the hydration of small molecule binding sites in ligand‐free protein structures</title><author>Yoshidome, Takashi ; Ikeguchi, Mitsunori ; Ohta, Masateru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5096-bdc3bf79e8754b2221180c33eec99ee6c951b3c9dc71c027366382f2fcaa5afd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding sites</topic><topic>Crystallography</topic><topic>Distribution functions</topic><topic>distribution functions of water</topic><topic>Hydration</topic><topic>hydration state</topic><topic>Hydrogen bonds</topic><topic>ligand binding</topic><topic>Ligands</topic><topic>Proteins</topic><topic>statistical mechanical theory of solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshidome, Takashi</creatorcontrib><creatorcontrib>Ikeguchi, Mitsunori</creatorcontrib><creatorcontrib>Ohta, Masateru</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshidome, Takashi</au><au>Ikeguchi, Mitsunori</au><au>Ohta, Masateru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive 3D‐RISM analysis of the hydration of small molecule binding sites in ligand‐free protein structures</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2020-10-30</date><risdate>2020</risdate><volume>41</volume><issue>28</issue><spage>2406</spage><epage>2419</epage><pages>2406-2419</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Hydration is a critical factor in the ligand binding process. Herein, to examine the hydration states of ligand binding sites, the three‐dimensional distribution function for the water oxygen site, gO(r), is computed for 3,706 ligand‐free protein structures based on the corresponding small molecule–protein complexes using the 3D‐RISM theory. For crystallographic waters (CWs) close to the ligand, gO(r) reveals that several CWs are stabilized by interaction networks formed between the ligand, CW, and protein. Based on the gO(r) for the crystallographic binding pose of the ligand, hydrogen bond interactions are dominant in the highly hydrated regions while weak interactions such as CH‐O are dominant in the moderately hydrated regions. The polar heteroatoms of the ligand occupy the highly hydrated and moderately hydrated regions in the crystallographic (correct) and wrongly docked (incorrect) poses, respectively. Thus, the gO(r) of polar heteroatoms may be used to distinguish the correct binding poses.
The hydration states of ligand binding sites are comprehensively analyzed using a theory of solvation. An analysis of the hydration states at the positions of ligand heavy atoms indicates that the polar heteroatoms of the ligand tend to occupy highly hydrated regions in the correct ligand poses and moderately hydrated regions in the incorrect ligand poses, suggesting a way to distinguish these two poses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32815201</pmid><doi>10.1002/jcc.26406</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7407-1942</orcidid><orcidid>https://orcid.org/0000-0002-6580-7185</orcidid><orcidid>https://orcid.org/0000-0003-3199-6931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2020-10, Vol.41 (28), p.2406-2419 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7540010 |
source | Access via Wiley Online Library |
subjects | Binding sites Crystallography Distribution functions distribution functions of water Hydration hydration state Hydrogen bonds ligand binding Ligands Proteins statistical mechanical theory of solvation |
title | Comprehensive 3D‐RISM analysis of the hydration of small molecule binding sites in ligand‐free protein structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%203D%E2%80%90RISM%20analysis%20of%20the%20hydration%20of%20small%20molecule%20binding%20sites%20in%20ligand%E2%80%90free%20protein%20structures&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Yoshidome,%20Takashi&rft.date=2020-10-30&rft.volume=41&rft.issue=28&rft.spage=2406&rft.epage=2419&rft.pages=2406-2419&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.26406&rft_dat=%3Cproquest_pubme%3E2442582537%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442582537&rft_id=info:pmid/32815201&rfr_iscdi=true |