Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period

In this study, we characterize the impacts of COVID-19 on air pollution using NO 2 and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO 2 reduction during the lockdown (March 25–May 3rd, 2020) compared to the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-10, Vol.10 (1), p.16574-16574, Article 16574
Hauptverfasser: Vadrevu, Krishna Prasad, Eaturu, Aditya, Biswas, Sumalika, Lasko, Kristofer, Sahu, Saroj, Garg, J. K., Justice, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16574
container_issue 1
container_start_page 16574
container_title Scientific reports
container_volume 10
creator Vadrevu, Krishna Prasad
Eaturu, Aditya
Biswas, Sumalika
Lasko, Kristofer
Sahu, Saroj
Garg, J. K.
Justice, Chris
description In this study, we characterize the impacts of COVID-19 on air pollution using NO 2 and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO 2 reduction during the lockdown (March 25–May 3rd, 2020) compared to the pre-lockdown (January 1st–March 24th, 2020) period. Also, a 19% reduction in NO 2 was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO 2 reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO 2 for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO 2 levels decreased exponentially. In contrast, to the decreased NO 2 observed for most of the cities, we observed an increase in NO 2 for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO 2 temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO 2 , and the results can inform pollution mitigation efforts across different cities of India.
doi_str_mv 10.1038/s41598-020-72271-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7539013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695800983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-db2e8d31368b24a0b592bc42ebb99c4c1920152dd48c7461c2f20567fb0ba2ea3</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Kb2D7giceNmLBzgDmxMzNXqTZp0YeuW8DUtdS6MMHNN_73c3qZ-LGQDnPO-Tzi8CL2m5B0lTJ5VToWSHQHS9QA97cQzdAyEiw4YwPM_zkfotNY70pYAxal6iY4YI8ApyGM0fp3MHM2ITfJ4Dtspl3bZmRJbOaeK84BNLHjK47jsKzjvQsGcYhfnGB76m-SjwX4pMd3g-Tbg9eW3zceOKjxm993nnwlPocTsX6EXgxlrOH3cT9D1-aer9Zfu4vLzZv3honOiJ3PnLQTpGWUraYEbYoUC6zgEa5Vy3FEFhArwnkvX8xV1MAARq36wxBoIhp2g9wfutNht8C6kuU2lpxK3ptzrbKL-u5Pirb7JO90LpghlDfD2EVDyjyXUWW9jdWEcTQp5qRo4V1RSImiTvvlHepeXktp4GlZKSEKU3APhoHIl11rC8PQYSvQ-T33IU7c89UOeWjQTO5jqtP_aUH6j_-P6BdepoSo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695800983</pqid></control><display><type>article</type><title>Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Vadrevu, Krishna Prasad ; Eaturu, Aditya ; Biswas, Sumalika ; Lasko, Kristofer ; Sahu, Saroj ; Garg, J. K. ; Justice, Chris</creator><creatorcontrib>Vadrevu, Krishna Prasad ; Eaturu, Aditya ; Biswas, Sumalika ; Lasko, Kristofer ; Sahu, Saroj ; Garg, J. K. ; Justice, Chris</creatorcontrib><description>In this study, we characterize the impacts of COVID-19 on air pollution using NO 2 and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO 2 reduction during the lockdown (March 25–May 3rd, 2020) compared to the pre-lockdown (January 1st–March 24th, 2020) period. Also, a 19% reduction in NO 2 was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO 2 reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO 2 for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO 2 levels decreased exponentially. In contrast, to the decreased NO 2 observed for most of the cities, we observed an increase in NO 2 for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO 2 temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO 2 , and the results can inform pollution mitigation efforts across different cities of India.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72271-5</identifier><identifier>PMID: 33024128</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/172 ; 704/172/4081 ; Air pollution ; Cities ; Coronaviruses ; COVID-19 ; Humanities and Social Sciences ; multidisciplinary ; Nitrogen dioxide ; Optical analysis ; Pollution control ; Science ; Science (multidisciplinary) ; Shelter in place ; Temporal variations</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.16574-16574, Article 16574</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-db2e8d31368b24a0b592bc42ebb99c4c1920152dd48c7461c2f20567fb0ba2ea3</citedby><cites>FETCH-LOGICAL-c570t-db2e8d31368b24a0b592bc42ebb99c4c1920152dd48c7461c2f20567fb0ba2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids></links><search><creatorcontrib>Vadrevu, Krishna Prasad</creatorcontrib><creatorcontrib>Eaturu, Aditya</creatorcontrib><creatorcontrib>Biswas, Sumalika</creatorcontrib><creatorcontrib>Lasko, Kristofer</creatorcontrib><creatorcontrib>Sahu, Saroj</creatorcontrib><creatorcontrib>Garg, J. K.</creatorcontrib><creatorcontrib>Justice, Chris</creatorcontrib><title>Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>In this study, we characterize the impacts of COVID-19 on air pollution using NO 2 and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO 2 reduction during the lockdown (March 25–May 3rd, 2020) compared to the pre-lockdown (January 1st–March 24th, 2020) period. Also, a 19% reduction in NO 2 was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO 2 reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO 2 for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO 2 levels decreased exponentially. In contrast, to the decreased NO 2 observed for most of the cities, we observed an increase in NO 2 for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO 2 temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO 2 , and the results can inform pollution mitigation efforts across different cities of India.</description><subject>704/172</subject><subject>704/172/4081</subject><subject>Air pollution</subject><subject>Cities</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nitrogen dioxide</subject><subject>Optical analysis</subject><subject>Pollution control</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shelter in place</subject><subject>Temporal variations</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEUhonR2Kb2D7giceNmLBzgDmxMzNXqTZp0YeuW8DUtdS6MMHNN_73c3qZ-LGQDnPO-Tzi8CL2m5B0lTJ5VToWSHQHS9QA97cQzdAyEiw4YwPM_zkfotNY70pYAxal6iY4YI8ApyGM0fp3MHM2ITfJ4Dtspl3bZmRJbOaeK84BNLHjK47jsKzjvQsGcYhfnGB76m-SjwX4pMd3g-Tbg9eW3zceOKjxm993nnwlPocTsX6EXgxlrOH3cT9D1-aer9Zfu4vLzZv3honOiJ3PnLQTpGWUraYEbYoUC6zgEa5Vy3FEFhArwnkvX8xV1MAARq36wxBoIhp2g9wfutNht8C6kuU2lpxK3ptzrbKL-u5Pirb7JO90LpghlDfD2EVDyjyXUWW9jdWEcTQp5qRo4V1RSImiTvvlHepeXktp4GlZKSEKU3APhoHIl11rC8PQYSvQ-T33IU7c89UOeWjQTO5jqtP_aUH6j_-P6BdepoSo</recordid><startdate>20201006</startdate><enddate>20201006</enddate><creator>Vadrevu, Krishna Prasad</creator><creator>Eaturu, Aditya</creator><creator>Biswas, Sumalika</creator><creator>Lasko, Kristofer</creator><creator>Sahu, Saroj</creator><creator>Garg, J. K.</creator><creator>Justice, Chris</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201006</creationdate><title>Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period</title><author>Vadrevu, Krishna Prasad ; Eaturu, Aditya ; Biswas, Sumalika ; Lasko, Kristofer ; Sahu, Saroj ; Garg, J. K. ; Justice, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-db2e8d31368b24a0b592bc42ebb99c4c1920152dd48c7461c2f20567fb0ba2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/172</topic><topic>704/172/4081</topic><topic>Air pollution</topic><topic>Cities</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nitrogen dioxide</topic><topic>Optical analysis</topic><topic>Pollution control</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shelter in place</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vadrevu, Krishna Prasad</creatorcontrib><creatorcontrib>Eaturu, Aditya</creatorcontrib><creatorcontrib>Biswas, Sumalika</creatorcontrib><creatorcontrib>Lasko, Kristofer</creatorcontrib><creatorcontrib>Sahu, Saroj</creatorcontrib><creatorcontrib>Garg, J. K.</creatorcontrib><creatorcontrib>Justice, Chris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vadrevu, Krishna Prasad</au><au>Eaturu, Aditya</au><au>Biswas, Sumalika</au><au>Lasko, Kristofer</au><au>Sahu, Saroj</au><au>Garg, J. K.</au><au>Justice, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-10-06</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>16574</spage><epage>16574</epage><pages>16574-16574</pages><artnum>16574</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we characterize the impacts of COVID-19 on air pollution using NO 2 and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO 2 reduction during the lockdown (March 25–May 3rd, 2020) compared to the pre-lockdown (January 1st–March 24th, 2020) period. Also, a 19% reduction in NO 2 was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO 2 reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO 2 for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO 2 levels decreased exponentially. In contrast, to the decreased NO 2 observed for most of the cities, we observed an increase in NO 2 for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO 2 temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO 2 , and the results can inform pollution mitigation efforts across different cities of India.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33024128</pmid><doi>10.1038/s41598-020-72271-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-10, Vol.10 (1), p.16574-16574, Article 16574
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7539013
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 704/172
704/172/4081
Air pollution
Cities
Coronaviruses
COVID-19
Humanities and Social Sciences
multidisciplinary
Nitrogen dioxide
Optical analysis
Pollution control
Science
Science (multidisciplinary)
Shelter in place
Temporal variations
title Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20and%20temporal%20variations%20of%20air%20pollution%20over%2041%20cities%20of%20India%20during%20the%20COVID-19%20lockdown%20period&rft.jtitle=Scientific%20reports&rft.au=Vadrevu,%20Krishna%20Prasad&rft.date=2020-10-06&rft.volume=10&rft.issue=1&rft.spage=16574&rft.epage=16574&rft.pages=16574-16574&rft.artnum=16574&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72271-5&rft_dat=%3Cproquest_pubme%3E2695800983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695800983&rft_id=info:pmid/33024128&rfr_iscdi=true