Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period
In this study, we characterize the impacts of COVID-19 on air pollution using NO 2 and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO 2 reduction during the lockdown (March 25–May 3rd, 2020) compared to the p...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-10, Vol.10 (1), p.16574-16574, Article 16574 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16574 |
---|---|
container_issue | 1 |
container_start_page | 16574 |
container_title | Scientific reports |
container_volume | 10 |
creator | Vadrevu, Krishna Prasad Eaturu, Aditya Biswas, Sumalika Lasko, Kristofer Sahu, Saroj Garg, J. K. Justice, Chris |
description | In this study, we characterize the impacts of COVID-19 on air pollution using NO
2
and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO
2
reduction during the lockdown (March 25–May 3rd, 2020) compared to the pre-lockdown (January 1st–March 24th, 2020) period. Also, a 19% reduction in NO
2
was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO
2
reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO
2
for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO
2
levels decreased exponentially. In contrast, to the decreased NO
2
observed for most of the cities, we observed an increase in NO
2
for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO
2
temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO
2
, and the results can inform pollution mitigation efforts across different cities of India. |
doi_str_mv | 10.1038/s41598-020-72271-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7539013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695800983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-db2e8d31368b24a0b592bc42ebb99c4c1920152dd48c7461c2f20567fb0ba2ea3</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Kb2D7giceNmLBzgDmxMzNXqTZp0YeuW8DUtdS6MMHNN_73c3qZ-LGQDnPO-Tzi8CL2m5B0lTJ5VToWSHQHS9QA97cQzdAyEiw4YwPM_zkfotNY70pYAxal6iY4YI8ApyGM0fp3MHM2ITfJ4Dtspl3bZmRJbOaeK84BNLHjK47jsKzjvQsGcYhfnGB76m-SjwX4pMd3g-Tbg9eW3zceOKjxm993nnwlPocTsX6EXgxlrOH3cT9D1-aer9Zfu4vLzZv3honOiJ3PnLQTpGWUraYEbYoUC6zgEa5Vy3FEFhArwnkvX8xV1MAARq36wxBoIhp2g9wfutNht8C6kuU2lpxK3ptzrbKL-u5Pirb7JO90LpghlDfD2EVDyjyXUWW9jdWEcTQp5qRo4V1RSImiTvvlHepeXktp4GlZKSEKU3APhoHIl11rC8PQYSvQ-T33IU7c89UOeWjQTO5jqtP_aUH6j_-P6BdepoSo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695800983</pqid></control><display><type>article</type><title>Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Vadrevu, Krishna Prasad ; Eaturu, Aditya ; Biswas, Sumalika ; Lasko, Kristofer ; Sahu, Saroj ; Garg, J. K. ; Justice, Chris</creator><creatorcontrib>Vadrevu, Krishna Prasad ; Eaturu, Aditya ; Biswas, Sumalika ; Lasko, Kristofer ; Sahu, Saroj ; Garg, J. K. ; Justice, Chris</creatorcontrib><description>In this study, we characterize the impacts of COVID-19 on air pollution using NO
2
and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO
2
reduction during the lockdown (March 25–May 3rd, 2020) compared to the pre-lockdown (January 1st–March 24th, 2020) period. Also, a 19% reduction in NO
2
was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO
2
reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO
2
for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO
2
levels decreased exponentially. In contrast, to the decreased NO
2
observed for most of the cities, we observed an increase in NO
2
for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO
2
temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO
2
, and the results can inform pollution mitigation efforts across different cities of India.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72271-5</identifier><identifier>PMID: 33024128</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/172 ; 704/172/4081 ; Air pollution ; Cities ; Coronaviruses ; COVID-19 ; Humanities and Social Sciences ; multidisciplinary ; Nitrogen dioxide ; Optical analysis ; Pollution control ; Science ; Science (multidisciplinary) ; Shelter in place ; Temporal variations</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.16574-16574, Article 16574</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-db2e8d31368b24a0b592bc42ebb99c4c1920152dd48c7461c2f20567fb0ba2ea3</citedby><cites>FETCH-LOGICAL-c570t-db2e8d31368b24a0b592bc42ebb99c4c1920152dd48c7461c2f20567fb0ba2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539013/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539013/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids></links><search><creatorcontrib>Vadrevu, Krishna Prasad</creatorcontrib><creatorcontrib>Eaturu, Aditya</creatorcontrib><creatorcontrib>Biswas, Sumalika</creatorcontrib><creatorcontrib>Lasko, Kristofer</creatorcontrib><creatorcontrib>Sahu, Saroj</creatorcontrib><creatorcontrib>Garg, J. K.</creatorcontrib><creatorcontrib>Justice, Chris</creatorcontrib><title>Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>In this study, we characterize the impacts of COVID-19 on air pollution using NO
2
and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO
2
reduction during the lockdown (March 25–May 3rd, 2020) compared to the pre-lockdown (January 1st–March 24th, 2020) period. Also, a 19% reduction in NO
2
was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO
2
reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO
2
for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO
2
levels decreased exponentially. In contrast, to the decreased NO
2
observed for most of the cities, we observed an increase in NO
2
for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO
2
temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO
2
, and the results can inform pollution mitigation efforts across different cities of India.</description><subject>704/172</subject><subject>704/172/4081</subject><subject>Air pollution</subject><subject>Cities</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nitrogen dioxide</subject><subject>Optical analysis</subject><subject>Pollution control</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shelter in place</subject><subject>Temporal variations</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEUhonR2Kb2D7giceNmLBzgDmxMzNXqTZp0YeuW8DUtdS6MMHNN_73c3qZ-LGQDnPO-Tzi8CL2m5B0lTJ5VToWSHQHS9QA97cQzdAyEiw4YwPM_zkfotNY70pYAxal6iY4YI8ApyGM0fp3MHM2ITfJ4Dtspl3bZmRJbOaeK84BNLHjK47jsKzjvQsGcYhfnGB76m-SjwX4pMd3g-Tbg9eW3zceOKjxm993nnwlPocTsX6EXgxlrOH3cT9D1-aer9Zfu4vLzZv3honOiJ3PnLQTpGWUraYEbYoUC6zgEa5Vy3FEFhArwnkvX8xV1MAARq36wxBoIhp2g9wfutNht8C6kuU2lpxK3ptzrbKL-u5Pirb7JO90LpghlDfD2EVDyjyXUWW9jdWEcTQp5qRo4V1RSImiTvvlHepeXktp4GlZKSEKU3APhoHIl11rC8PQYSvQ-T33IU7c89UOeWjQTO5jqtP_aUH6j_-P6BdepoSo</recordid><startdate>20201006</startdate><enddate>20201006</enddate><creator>Vadrevu, Krishna Prasad</creator><creator>Eaturu, Aditya</creator><creator>Biswas, Sumalika</creator><creator>Lasko, Kristofer</creator><creator>Sahu, Saroj</creator><creator>Garg, J. K.</creator><creator>Justice, Chris</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201006</creationdate><title>Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period</title><author>Vadrevu, Krishna Prasad ; Eaturu, Aditya ; Biswas, Sumalika ; Lasko, Kristofer ; Sahu, Saroj ; Garg, J. K. ; Justice, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-db2e8d31368b24a0b592bc42ebb99c4c1920152dd48c7461c2f20567fb0ba2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/172</topic><topic>704/172/4081</topic><topic>Air pollution</topic><topic>Cities</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nitrogen dioxide</topic><topic>Optical analysis</topic><topic>Pollution control</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shelter in place</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vadrevu, Krishna Prasad</creatorcontrib><creatorcontrib>Eaturu, Aditya</creatorcontrib><creatorcontrib>Biswas, Sumalika</creatorcontrib><creatorcontrib>Lasko, Kristofer</creatorcontrib><creatorcontrib>Sahu, Saroj</creatorcontrib><creatorcontrib>Garg, J. K.</creatorcontrib><creatorcontrib>Justice, Chris</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vadrevu, Krishna Prasad</au><au>Eaturu, Aditya</au><au>Biswas, Sumalika</au><au>Lasko, Kristofer</au><au>Sahu, Saroj</au><au>Garg, J. K.</au><au>Justice, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-10-06</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>16574</spage><epage>16574</epage><pages>16574-16574</pages><artnum>16574</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we characterize the impacts of COVID-19 on air pollution using NO
2
and Aerosol Optical Depth (AOD) from TROPOMI and MODIS satellite datasets for 41 cities in India. Specifically, our results suggested a 13% NO
2
reduction during the lockdown (March 25–May 3rd, 2020) compared to the pre-lockdown (January 1st–March 24th, 2020) period. Also, a 19% reduction in NO
2
was observed during the 2020-lockdown as compared to the same period during 2019. The top cities where NO
2
reduction occurred were New Delhi (61.74%), Delhi (60.37%), Bangalore (48.25%), Ahmedabad (46.20%), Nagpur (46.13%), Gandhinagar (45.64) and Mumbai (43.08%) with less reduction in coastal cities. The temporal analysis revealed a progressive decrease in NO
2
for all seven cities during the 2020 lockdown period. Results also suggested spatial differences, i.e., as the distance from the city center increased, the NO
2
levels decreased exponentially. In contrast, to the decreased NO
2
observed for most of the cities, we observed an increase in NO
2
for cities in Northeast India during the 2020 lockdown period and attribute it to vegetation fires. The NO
2
temporal patterns matched the AOD signal; however, the correlations were poor. Overall, our results highlight COVID-19 impacts on NO
2
, and the results can inform pollution mitigation efforts across different cities of India.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33024128</pmid><doi>10.1038/s41598-020-72271-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-10, Vol.10 (1), p.16574-16574, Article 16574 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7539013 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 704/172 704/172/4081 Air pollution Cities Coronaviruses COVID-19 Humanities and Social Sciences multidisciplinary Nitrogen dioxide Optical analysis Pollution control Science Science (multidisciplinary) Shelter in place Temporal variations |
title | Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20and%20temporal%20variations%20of%20air%20pollution%20over%2041%20cities%20of%20India%20during%20the%20COVID-19%20lockdown%20period&rft.jtitle=Scientific%20reports&rft.au=Vadrevu,%20Krishna%20Prasad&rft.date=2020-10-06&rft.volume=10&rft.issue=1&rft.spage=16574&rft.epage=16574&rft.pages=16574-16574&rft.artnum=16574&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72271-5&rft_dat=%3Cproquest_pubme%3E2695800983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695800983&rft_id=info:pmid/33024128&rfr_iscdi=true |