Germline BRCA 1-2 status prediction through ovarian ultrasound images radiogenomics: a hypothesis generating study (PROBE study)
Radiogenomics is a specific application of radiomics where imaging features are linked to genomic profiles. We aim to develop a radiogenomics model based on ovarian US images for predicting germline BRCA1/2 gene status in women with healthy ovaries. From January 2013 to December 2017 a total of 255...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-10, Vol.10 (1), p.16511-16511, Article 16511 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16511 |
---|---|
container_issue | 1 |
container_start_page | 16511 |
container_title | Scientific reports |
container_volume | 10 |
creator | Nero, Camilla Ciccarone, Francesca Boldrini, Luca Lenkowicz, Jacopo Paris, Ida Capoluongo, Ettore Domenico Testa, Antonia Carla Fagotti, Anna Valentini, Vincenzo Scambia, Giovanni |
description | Radiogenomics is a specific application of radiomics where imaging features are linked to genomic profiles. We aim to develop a radiogenomics model based on ovarian US images for predicting germline
BRCA1/2
gene status in women with healthy ovaries. From January 2013 to December 2017 a total of 255 patients addressed to germline
BRCA1/2
testing and pelvic US documenting normal ovaries, were retrospectively included. Feature selection for univariate analysis was carried out via correlation analysis. Multivariable analysis for classification of germline
BRCA1/2
status was then carried out via logistic regression, support vector machine, ensemble of decision trees and automated machine learning pipelines. Data were split into a training (75%) and a testing (25%) set. The four strategies obtained a similar performance in terms of accuracy on the testing set (from 0.54 of logistic regression to 0.64 of the auto-machine learning pipeline). Data coming from one of the tested US machine showed generally higher performances, particularly with the auto-machine learning pipeline (testing set specificity 0.87, negative predictive value 0.73, accuracy value 0.72 and 0.79 on training set). The study shows that a radiogenomics model on machine learning techniques is feasible and potentially useful for predicting g
BRCA1/2
status in women with healthy ovaries. |
doi_str_mv | 10.1038/s41598-020-73505-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7536234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448844437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1f397a38dab74b4b3bcde1a64f11ad5fe093fb41539db0f1481e00ac8e041c943</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2qVUHAH-iistQNXaT4OUm6qAQjSpGQQKhdW45zkxgl9tSOkWbXn14PoZR2gTd-3O8e-_gg9I6ST5Tw6iQKKuuqIIwUJZdEFuwV2mdE5AVn7PWz9R46ivGO5CFZLWj9Fu1xnvvkarWPfl1AmEbrAJ_drk8xLRiOs55TxJsArTWz9Q7PQ_CpH7C_18Fqh9M4Bx19ci22k-4h4qBb63twfrImfsYaD9uNnweINuJ8DEHP1vVZOrVbfHxze312vmw-HqI3nR4jHD3OB-jH1_Pv62_F1fXF5fr0qjCiFHNBO16XmletbkrRiIY3pgWqV6KjVLeyA1Lzrsl_wuu2IR0VFQVCtKmACGpqwQ_Ql0V3k5oJWgMuexjVJmQHYau8turfirOD6v29KiVfMb4TOH4UCP5ngjiryUYD46gd-BQVE6KqhBC8zOiH_9A7n4LL9nZULaSoZJ0ptlAm-BgDdE-PoUTtMlZLxipnpR4yViw3vX9u46nlT6IZ4AsQc8n1EP7e_YLsbyBLs8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449454859</pqid></control><display><type>article</type><title>Germline BRCA 1-2 status prediction through ovarian ultrasound images radiogenomics: a hypothesis generating study (PROBE study)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nero, Camilla ; Ciccarone, Francesca ; Boldrini, Luca ; Lenkowicz, Jacopo ; Paris, Ida ; Capoluongo, Ettore Domenico ; Testa, Antonia Carla ; Fagotti, Anna ; Valentini, Vincenzo ; Scambia, Giovanni</creator><creatorcontrib>Nero, Camilla ; Ciccarone, Francesca ; Boldrini, Luca ; Lenkowicz, Jacopo ; Paris, Ida ; Capoluongo, Ettore Domenico ; Testa, Antonia Carla ; Fagotti, Anna ; Valentini, Vincenzo ; Scambia, Giovanni</creatorcontrib><description>Radiogenomics is a specific application of radiomics where imaging features are linked to genomic profiles. We aim to develop a radiogenomics model based on ovarian US images for predicting germline
BRCA1/2
gene status in women with healthy ovaries. From January 2013 to December 2017 a total of 255 patients addressed to germline
BRCA1/2
testing and pelvic US documenting normal ovaries, were retrospectively included. Feature selection for univariate analysis was carried out via correlation analysis. Multivariable analysis for classification of germline
BRCA1/2
status was then carried out via logistic regression, support vector machine, ensemble of decision trees and automated machine learning pipelines. Data were split into a training (75%) and a testing (25%) set. The four strategies obtained a similar performance in terms of accuracy on the testing set (from 0.54 of logistic regression to 0.64 of the auto-machine learning pipeline). Data coming from one of the tested US machine showed generally higher performances, particularly with the auto-machine learning pipeline (testing set specificity 0.87, negative predictive value 0.73, accuracy value 0.72 and 0.79 on training set). The study shows that a radiogenomics model on machine learning techniques is feasible and potentially useful for predicting g
BRCA1/2
status in women with healthy ovaries.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-73505-2</identifier><identifier>PMID: 33020566</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/1516 ; 631/67/2195 ; 631/67/68 ; Adult ; Aged ; Algorithms ; BRCA1 protein ; BRCA1 Protein - genetics ; BRCA2 Protein - genetics ; Breast cancer ; Correlation analysis ; Female ; Forecasting ; Germ Cells - metabolism ; Germ Cells - physiology ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine Learning ; Middle Aged ; multidisciplinary ; Ovaries ; Ovary - diagnostic imaging ; Pilot Projects ; Radiomics ; Retrospective Studies ; Science ; Science (multidisciplinary) ; Support Vector Machine ; Ultrasonography - methods ; Ultrasound</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.16511-16511, Article 16511</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1f397a38dab74b4b3bcde1a64f11ad5fe093fb41539db0f1481e00ac8e041c943</citedby><cites>FETCH-LOGICAL-c474t-1f397a38dab74b4b3bcde1a64f11ad5fe093fb41539db0f1481e00ac8e041c943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536234/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536234/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33020566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nero, Camilla</creatorcontrib><creatorcontrib>Ciccarone, Francesca</creatorcontrib><creatorcontrib>Boldrini, Luca</creatorcontrib><creatorcontrib>Lenkowicz, Jacopo</creatorcontrib><creatorcontrib>Paris, Ida</creatorcontrib><creatorcontrib>Capoluongo, Ettore Domenico</creatorcontrib><creatorcontrib>Testa, Antonia Carla</creatorcontrib><creatorcontrib>Fagotti, Anna</creatorcontrib><creatorcontrib>Valentini, Vincenzo</creatorcontrib><creatorcontrib>Scambia, Giovanni</creatorcontrib><title>Germline BRCA 1-2 status prediction through ovarian ultrasound images radiogenomics: a hypothesis generating study (PROBE study)</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Radiogenomics is a specific application of radiomics where imaging features are linked to genomic profiles. We aim to develop a radiogenomics model based on ovarian US images for predicting germline
BRCA1/2
gene status in women with healthy ovaries. From January 2013 to December 2017 a total of 255 patients addressed to germline
BRCA1/2
testing and pelvic US documenting normal ovaries, were retrospectively included. Feature selection for univariate analysis was carried out via correlation analysis. Multivariable analysis for classification of germline
BRCA1/2
status was then carried out via logistic regression, support vector machine, ensemble of decision trees and automated machine learning pipelines. Data were split into a training (75%) and a testing (25%) set. The four strategies obtained a similar performance in terms of accuracy on the testing set (from 0.54 of logistic regression to 0.64 of the auto-machine learning pipeline). Data coming from one of the tested US machine showed generally higher performances, particularly with the auto-machine learning pipeline (testing set specificity 0.87, negative predictive value 0.73, accuracy value 0.72 and 0.79 on training set). The study shows that a radiogenomics model on machine learning techniques is feasible and potentially useful for predicting g
BRCA1/2
status in women with healthy ovaries.</description><subject>631/208/1516</subject><subject>631/67/2195</subject><subject>631/67/68</subject><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>BRCA1 protein</subject><subject>BRCA1 Protein - genetics</subject><subject>BRCA2 Protein - genetics</subject><subject>Breast cancer</subject><subject>Correlation analysis</subject><subject>Female</subject><subject>Forecasting</subject><subject>Germ Cells - metabolism</subject><subject>Germ Cells - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Ovaries</subject><subject>Ovary - diagnostic imaging</subject><subject>Pilot Projects</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Support Vector Machine</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtP3DAUha2qVUHAH-iistQNXaT4OUm6qAQjSpGQQKhdW45zkxgl9tSOkWbXn14PoZR2gTd-3O8e-_gg9I6ST5Tw6iQKKuuqIIwUJZdEFuwV2mdE5AVn7PWz9R46ivGO5CFZLWj9Fu1xnvvkarWPfl1AmEbrAJ_drk8xLRiOs55TxJsArTWz9Q7PQ_CpH7C_18Fqh9M4Bx19ci22k-4h4qBb63twfrImfsYaD9uNnweINuJ8DEHP1vVZOrVbfHxze312vmw-HqI3nR4jHD3OB-jH1_Pv62_F1fXF5fr0qjCiFHNBO16XmletbkrRiIY3pgWqV6KjVLeyA1Lzrsl_wuu2IR0VFQVCtKmACGpqwQ_Ql0V3k5oJWgMuexjVJmQHYau8turfirOD6v29KiVfMb4TOH4UCP5ngjiryUYD46gd-BQVE6KqhBC8zOiH_9A7n4LL9nZULaSoZJ0ptlAm-BgDdE-PoUTtMlZLxipnpR4yViw3vX9u46nlT6IZ4AsQc8n1EP7e_YLsbyBLs8A</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Nero, Camilla</creator><creator>Ciccarone, Francesca</creator><creator>Boldrini, Luca</creator><creator>Lenkowicz, Jacopo</creator><creator>Paris, Ida</creator><creator>Capoluongo, Ettore Domenico</creator><creator>Testa, Antonia Carla</creator><creator>Fagotti, Anna</creator><creator>Valentini, Vincenzo</creator><creator>Scambia, Giovanni</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201005</creationdate><title>Germline BRCA 1-2 status prediction through ovarian ultrasound images radiogenomics: a hypothesis generating study (PROBE study)</title><author>Nero, Camilla ; Ciccarone, Francesca ; Boldrini, Luca ; Lenkowicz, Jacopo ; Paris, Ida ; Capoluongo, Ettore Domenico ; Testa, Antonia Carla ; Fagotti, Anna ; Valentini, Vincenzo ; Scambia, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1f397a38dab74b4b3bcde1a64f11ad5fe093fb41539db0f1481e00ac8e041c943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/208/1516</topic><topic>631/67/2195</topic><topic>631/67/68</topic><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>BRCA1 protein</topic><topic>BRCA1 Protein - genetics</topic><topic>BRCA2 Protein - genetics</topic><topic>Breast cancer</topic><topic>Correlation analysis</topic><topic>Female</topic><topic>Forecasting</topic><topic>Germ Cells - metabolism</topic><topic>Germ Cells - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Ovaries</topic><topic>Ovary - diagnostic imaging</topic><topic>Pilot Projects</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Support Vector Machine</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nero, Camilla</creatorcontrib><creatorcontrib>Ciccarone, Francesca</creatorcontrib><creatorcontrib>Boldrini, Luca</creatorcontrib><creatorcontrib>Lenkowicz, Jacopo</creatorcontrib><creatorcontrib>Paris, Ida</creatorcontrib><creatorcontrib>Capoluongo, Ettore Domenico</creatorcontrib><creatorcontrib>Testa, Antonia Carla</creatorcontrib><creatorcontrib>Fagotti, Anna</creatorcontrib><creatorcontrib>Valentini, Vincenzo</creatorcontrib><creatorcontrib>Scambia, Giovanni</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nero, Camilla</au><au>Ciccarone, Francesca</au><au>Boldrini, Luca</au><au>Lenkowicz, Jacopo</au><au>Paris, Ida</au><au>Capoluongo, Ettore Domenico</au><au>Testa, Antonia Carla</au><au>Fagotti, Anna</au><au>Valentini, Vincenzo</au><au>Scambia, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Germline BRCA 1-2 status prediction through ovarian ultrasound images radiogenomics: a hypothesis generating study (PROBE study)</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-05</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>16511</spage><epage>16511</epage><pages>16511-16511</pages><artnum>16511</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Radiogenomics is a specific application of radiomics where imaging features are linked to genomic profiles. We aim to develop a radiogenomics model based on ovarian US images for predicting germline
BRCA1/2
gene status in women with healthy ovaries. From January 2013 to December 2017 a total of 255 patients addressed to germline
BRCA1/2
testing and pelvic US documenting normal ovaries, were retrospectively included. Feature selection for univariate analysis was carried out via correlation analysis. Multivariable analysis for classification of germline
BRCA1/2
status was then carried out via logistic regression, support vector machine, ensemble of decision trees and automated machine learning pipelines. Data were split into a training (75%) and a testing (25%) set. The four strategies obtained a similar performance in terms of accuracy on the testing set (from 0.54 of logistic regression to 0.64 of the auto-machine learning pipeline). Data coming from one of the tested US machine showed generally higher performances, particularly with the auto-machine learning pipeline (testing set specificity 0.87, negative predictive value 0.73, accuracy value 0.72 and 0.79 on training set). The study shows that a radiogenomics model on machine learning techniques is feasible and potentially useful for predicting g
BRCA1/2
status in women with healthy ovaries.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33020566</pmid><doi>10.1038/s41598-020-73505-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-10, Vol.10 (1), p.16511-16511, Article 16511 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7536234 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/208/1516 631/67/2195 631/67/68 Adult Aged Algorithms BRCA1 protein BRCA1 Protein - genetics BRCA2 Protein - genetics Breast cancer Correlation analysis Female Forecasting Germ Cells - metabolism Germ Cells - physiology Humanities and Social Sciences Humans Learning algorithms Machine Learning Middle Aged multidisciplinary Ovaries Ovary - diagnostic imaging Pilot Projects Radiomics Retrospective Studies Science Science (multidisciplinary) Support Vector Machine Ultrasonography - methods Ultrasound |
title | Germline BRCA 1-2 status prediction through ovarian ultrasound images radiogenomics: a hypothesis generating study (PROBE study) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Germline%20BRCA%201-2%20status%20prediction%20through%20ovarian%20ultrasound%20images%20radiogenomics:%20a%20hypothesis%20generating%20study%20(PROBE%20study)&rft.jtitle=Scientific%20reports&rft.au=Nero,%20Camilla&rft.date=2020-10-05&rft.volume=10&rft.issue=1&rft.spage=16511&rft.epage=16511&rft.pages=16511-16511&rft.artnum=16511&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-73505-2&rft_dat=%3Cproquest_pubme%3E2448844437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449454859&rft_id=info:pmid/33020566&rfr_iscdi=true |