Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites
Advanced manufacturing methods like multi-material additive manufacturing are enabling realization of multiscale materials with intricate spatially varying microstructures and thus, material properties. This blurs the boundary between material and structure, paving the way to lighter, stiffer, and s...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-10, Vol.10 (1), p.16507-16507, Article 16507 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16507 |
---|---|
container_issue | 1 |
container_start_page | 16507 |
container_title | Scientific reports |
container_volume | 10 |
creator | Boddeti, Narasimha Tang, Yunlong Maute, Kurt Rosen, David W. Dunn, Martin L. |
description | Advanced manufacturing methods like multi-material additive manufacturing are enabling realization of multiscale materials with intricate spatially varying microstructures and thus, material properties. This blurs the boundary between material and structure, paving the way to lighter, stiffer, and stronger structures. Taking advantage of these tunable multiscale materials warrants development of novel design methods that effectively marry the concepts of material and structure. We propose such a design to manufacture workflow and demonstrate it with laminated continuous fiber-reinforced composites that possess variable stiffness enabled by spatially varying microstructure. This contrasts with traditional fiber-reinforced composites which typically have a fixed, homogenous microstructure and thus constant stiffness. The proposed workflow includes three steps: (1)
Design automation
—efficient synthesis of an optimized multiscale design with microstructure homogenization enabling efficiency, (2)
Material compilation
—interpretation of the homogenized design lacking specificity in microstructural detail to a manufacturable structure, and (3)
Digital manufacturing
—automated manufacture of the
compiled
structure. We adapted multiscale topology optimization, a mesh parametrization-based algorithm and voxel-based multimaterial jetting for these three steps, respectively. We demonstrated that our workflow can be applied to arbitrary 2D or 3D surfaces. We validated the complete workflow with experiments on two simple planar structures; the results agree reasonably well with simulations. |
doi_str_mv | 10.1038/s41598-020-73333-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7536228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449455447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c20c752ca319159106518e63d04f318967b41e696b7e3cf909190c3df3a49f0d3</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhUVpSEKSP5CVoJtu3Ogxsq1NoYSmDQSyaddClke3CrZ0K8mB_vsquaGvRWcjwXznMIdDyCVn7ziT41UBrvTYMcG6Qbbp4BU5FQxUJ6QQr__4n5CLUh5YGyU0cH1MTqRsOjXAKcH7fQ2rXeiMJewitXGmq42bt65uGWny9NHmYKcFaanB-4il0MWuIdqKM3Up1hC3tBXqw4SZZgzRp-yed-s-lVCxnJMjb5eCFy_vGfl68_HL9efu7v7T7fWHu86B4rVzgrlBCWcl1y0dZ73iI_ZyZuAlH3U_TMCx1_00oHReM801c3L20oL2bJZn5P3Bd79NK84OY812MfvcIuYfJtlg_t7E8M3s0qMZlOyFGJvB2xeDnL5vWKpZQ3G4LDZiy2gEwDgCsEE09M0_6EPacmzxnigNSgEMjRIHyuVUSkb_6xjOzFOR5lCkaYWY5yINNJE8iEqD4w7zb-v_qH4CwpWgXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449455447</pqid></control><display><type>article</type><title>Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Boddeti, Narasimha ; Tang, Yunlong ; Maute, Kurt ; Rosen, David W. ; Dunn, Martin L.</creator><creatorcontrib>Boddeti, Narasimha ; Tang, Yunlong ; Maute, Kurt ; Rosen, David W. ; Dunn, Martin L.</creatorcontrib><description>Advanced manufacturing methods like multi-material additive manufacturing are enabling realization of multiscale materials with intricate spatially varying microstructures and thus, material properties. This blurs the boundary between material and structure, paving the way to lighter, stiffer, and stronger structures. Taking advantage of these tunable multiscale materials warrants development of novel design methods that effectively marry the concepts of material and structure. We propose such a design to manufacture workflow and demonstrate it with laminated continuous fiber-reinforced composites that possess variable stiffness enabled by spatially varying microstructure. This contrasts with traditional fiber-reinforced composites which typically have a fixed, homogenous microstructure and thus constant stiffness. The proposed workflow includes three steps: (1)
Design automation
—efficient synthesis of an optimized multiscale design with microstructure homogenization enabling efficiency, (2)
Material compilation
—interpretation of the homogenized design lacking specificity in microstructural detail to a manufacturable structure, and (3)
Digital manufacturing
—automated manufacture of the
compiled
structure. We adapted multiscale topology optimization, a mesh parametrization-based algorithm and voxel-based multimaterial jetting for these three steps, respectively. We demonstrated that our workflow can be applied to arbitrary 2D or 3D surfaces. We validated the complete workflow with experiments on two simple planar structures; the results agree reasonably well with simulations.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-73333-4</identifier><identifier>PMID: 33020574</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/1023 ; Automation ; Design ; Humanities and Social Sciences ; Manufacturing ; Microstructure ; multidisciplinary ; Science ; Science (multidisciplinary) ; Topology</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.16507-16507, Article 16507</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c20c752ca319159106518e63d04f318967b41e696b7e3cf909190c3df3a49f0d3</citedby><cites>FETCH-LOGICAL-c451t-c20c752ca319159106518e63d04f318967b41e696b7e3cf909190c3df3a49f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536228/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536228/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids></links><search><creatorcontrib>Boddeti, Narasimha</creatorcontrib><creatorcontrib>Tang, Yunlong</creatorcontrib><creatorcontrib>Maute, Kurt</creatorcontrib><creatorcontrib>Rosen, David W.</creatorcontrib><creatorcontrib>Dunn, Martin L.</creatorcontrib><title>Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Advanced manufacturing methods like multi-material additive manufacturing are enabling realization of multiscale materials with intricate spatially varying microstructures and thus, material properties. This blurs the boundary between material and structure, paving the way to lighter, stiffer, and stronger structures. Taking advantage of these tunable multiscale materials warrants development of novel design methods that effectively marry the concepts of material and structure. We propose such a design to manufacture workflow and demonstrate it with laminated continuous fiber-reinforced composites that possess variable stiffness enabled by spatially varying microstructure. This contrasts with traditional fiber-reinforced composites which typically have a fixed, homogenous microstructure and thus constant stiffness. The proposed workflow includes three steps: (1)
Design automation
—efficient synthesis of an optimized multiscale design with microstructure homogenization enabling efficiency, (2)
Material compilation
—interpretation of the homogenized design lacking specificity in microstructural detail to a manufacturable structure, and (3)
Digital manufacturing
—automated manufacture of the
compiled
structure. We adapted multiscale topology optimization, a mesh parametrization-based algorithm and voxel-based multimaterial jetting for these three steps, respectively. We demonstrated that our workflow can be applied to arbitrary 2D or 3D surfaces. We validated the complete workflow with experiments on two simple planar structures; the results agree reasonably well with simulations.</description><subject>639/166/988</subject><subject>639/301/1023</subject><subject>Automation</subject><subject>Design</subject><subject>Humanities and Social Sciences</subject><subject>Manufacturing</subject><subject>Microstructure</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Topology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtr3TAQhUVpSEKSP5CVoJtu3Ogxsq1NoYSmDQSyaddClke3CrZ0K8mB_vsquaGvRWcjwXznMIdDyCVn7ziT41UBrvTYMcG6Qbbp4BU5FQxUJ6QQr__4n5CLUh5YGyU0cH1MTqRsOjXAKcH7fQ2rXeiMJewitXGmq42bt65uGWny9NHmYKcFaanB-4il0MWuIdqKM3Up1hC3tBXqw4SZZgzRp-yed-s-lVCxnJMjb5eCFy_vGfl68_HL9efu7v7T7fWHu86B4rVzgrlBCWcl1y0dZ73iI_ZyZuAlH3U_TMCx1_00oHReM801c3L20oL2bJZn5P3Bd79NK84OY812MfvcIuYfJtlg_t7E8M3s0qMZlOyFGJvB2xeDnL5vWKpZQ3G4LDZiy2gEwDgCsEE09M0_6EPacmzxnigNSgEMjRIHyuVUSkb_6xjOzFOR5lCkaYWY5yINNJE8iEqD4w7zb-v_qH4CwpWgXg</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Boddeti, Narasimha</creator><creator>Tang, Yunlong</creator><creator>Maute, Kurt</creator><creator>Rosen, David W.</creator><creator>Dunn, Martin L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201005</creationdate><title>Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites</title><author>Boddeti, Narasimha ; Tang, Yunlong ; Maute, Kurt ; Rosen, David W. ; Dunn, Martin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c20c752ca319159106518e63d04f318967b41e696b7e3cf909190c3df3a49f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/988</topic><topic>639/301/1023</topic><topic>Automation</topic><topic>Design</topic><topic>Humanities and Social Sciences</topic><topic>Manufacturing</topic><topic>Microstructure</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boddeti, Narasimha</creatorcontrib><creatorcontrib>Tang, Yunlong</creatorcontrib><creatorcontrib>Maute, Kurt</creatorcontrib><creatorcontrib>Rosen, David W.</creatorcontrib><creatorcontrib>Dunn, Martin L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boddeti, Narasimha</au><au>Tang, Yunlong</au><au>Maute, Kurt</au><au>Rosen, David W.</au><au>Dunn, Martin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-10-05</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>16507</spage><epage>16507</epage><pages>16507-16507</pages><artnum>16507</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Advanced manufacturing methods like multi-material additive manufacturing are enabling realization of multiscale materials with intricate spatially varying microstructures and thus, material properties. This blurs the boundary between material and structure, paving the way to lighter, stiffer, and stronger structures. Taking advantage of these tunable multiscale materials warrants development of novel design methods that effectively marry the concepts of material and structure. We propose such a design to manufacture workflow and demonstrate it with laminated continuous fiber-reinforced composites that possess variable stiffness enabled by spatially varying microstructure. This contrasts with traditional fiber-reinforced composites which typically have a fixed, homogenous microstructure and thus constant stiffness. The proposed workflow includes three steps: (1)
Design automation
—efficient synthesis of an optimized multiscale design with microstructure homogenization enabling efficiency, (2)
Material compilation
—interpretation of the homogenized design lacking specificity in microstructural detail to a manufacturable structure, and (3)
Digital manufacturing
—automated manufacture of the
compiled
structure. We adapted multiscale topology optimization, a mesh parametrization-based algorithm and voxel-based multimaterial jetting for these three steps, respectively. We demonstrated that our workflow can be applied to arbitrary 2D or 3D surfaces. We validated the complete workflow with experiments on two simple planar structures; the results agree reasonably well with simulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33020574</pmid><doi>10.1038/s41598-020-73333-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-10, Vol.10 (1), p.16507-16507, Article 16507 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7536228 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 639/166/988 639/301/1023 Automation Design Humanities and Social Sciences Manufacturing Microstructure multidisciplinary Science Science (multidisciplinary) Topology |
title | Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20and%20manufacture%20of%20variable%20stiffness%20laminated%20continuous%20fiber%20reinforced%20composites&rft.jtitle=Scientific%20reports&rft.au=Boddeti,%20Narasimha&rft.date=2020-10-05&rft.volume=10&rft.issue=1&rft.spage=16507&rft.epage=16507&rft.pages=16507-16507&rft.artnum=16507&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-73333-4&rft_dat=%3Cproquest_pubme%3E2449455447%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449455447&rft_id=info:pmid/33020574&rfr_iscdi=true |