Computing and optimizing over all fixed-points of discrete systems on large networks
Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet finding them can be computationally challenging. Here, we show how to efficiently compute all equilibrium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2020-09, Vol.17 (170), p.20200126-20200126 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20200126 |
---|---|
container_issue | 170 |
container_start_page | 20200126 |
container_title | Journal of the Royal Society interface |
container_volume | 17 |
creator | Riehl, James R Zimmerman, Maxwell I Singh, Matthew F Bowman, Gregory R Ching, ShiNung |
description | Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet finding them can be computationally challenging. Here, we show how to efficiently compute all equilibrium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning, we recursively decompose the original problem into a set of smaller, simpler problems that are easy to compute, and whose solutions combine to yield the full equilibrium set. This makes it possible to find the fixed points of systems on arbitrarily large networks meeting certain criteria. This approach can also be used without computing the full equilibrium set, which may grow very large in some cases. For example, one can use this method to check the existence and total number of equilibria, or to find equilibria that are optimal with respect to a given cost function. We demonstrate the potential capabilities of this approach with examples in two scientific domains: computing the number of fixed points in brain networks and finding the minimal energy conformations of lattice-based protein folding models. |
doi_str_mv | 10.1098/rsif.2020.0126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7536059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441279665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-7e6a0b010ebe30eaef2ccebf343667a8097425131a659902d610d57b60c8039d3</originalsourceid><addsrcrecordid>eNpVUblOxDAQtRCIu6VELmmyjO3YWTdIaMUlIdFAbTnJZDEkcbC9XF9PImAF1Vxv3hyPkCMGMwZ6fhqia2YcOMyAcbVBdlmR80wqxTfX_lzvkL0YnwBEIaTcJjuCawCu9S65X_huWCXXL6nta-qH5Dr3OYX-FQO1bUsb9451NnjXp0h9Q2sXq4AJafyICbsx19PWhiXSHtObD8_xgGw1to14-GP3ycPlxf3iOru9u7pZnN9mVa5kygpUFkpggCUKQIsNryosG5ELpQo7Bz3uL5lgVkmtgdeKQS2LUkE1B6FrsU_OvnmHVdlhXWGfgm3NEFxnw4fx1pn_ld49mqV_NYUUCqQeCU5-CIJ_WWFMphuPw7a1PfpVNDzPGS-0UnKEzr6hVfAxBmzWYxiYSQozSWEmKcwkxdhw_He5Nfz39-ILk1eHIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441279665</pqid></control><display><type>article</type><title>Computing and optimizing over all fixed-points of discrete systems on large networks</title><source>PubMed Central</source><creator>Riehl, James R ; Zimmerman, Maxwell I ; Singh, Matthew F ; Bowman, Gregory R ; Ching, ShiNung</creator><creatorcontrib>Riehl, James R ; Zimmerman, Maxwell I ; Singh, Matthew F ; Bowman, Gregory R ; Ching, ShiNung</creatorcontrib><description>Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet finding them can be computationally challenging. Here, we show how to efficiently compute all equilibrium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning, we recursively decompose the original problem into a set of smaller, simpler problems that are easy to compute, and whose solutions combine to yield the full equilibrium set. This makes it possible to find the fixed points of systems on arbitrarily large networks meeting certain criteria. This approach can also be used without computing the full equilibrium set, which may grow very large in some cases. For example, one can use this method to check the existence and total number of equilibria, or to find equilibria that are optimal with respect to a given cost function. We demonstrate the potential capabilities of this approach with examples in two scientific domains: computing the number of fixed points in brain networks and finding the minimal energy conformations of lattice-based protein folding models.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2020.0126</identifier><identifier>PMID: 32900299</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Life Sciences–Engineering interface</subject><ispartof>Journal of the Royal Society interface, 2020-09, Vol.17 (170), p.20200126-20200126</ispartof><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-7e6a0b010ebe30eaef2ccebf343667a8097425131a659902d610d57b60c8039d3</citedby><cites>FETCH-LOGICAL-c465t-7e6a0b010ebe30eaef2ccebf343667a8097425131a659902d610d57b60c8039d3</cites><orcidid>0000-0001-9555-7036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536059/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536059/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32900299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riehl, James R</creatorcontrib><creatorcontrib>Zimmerman, Maxwell I</creatorcontrib><creatorcontrib>Singh, Matthew F</creatorcontrib><creatorcontrib>Bowman, Gregory R</creatorcontrib><creatorcontrib>Ching, ShiNung</creatorcontrib><title>Computing and optimizing over all fixed-points of discrete systems on large networks</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet finding them can be computationally challenging. Here, we show how to efficiently compute all equilibrium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning, we recursively decompose the original problem into a set of smaller, simpler problems that are easy to compute, and whose solutions combine to yield the full equilibrium set. This makes it possible to find the fixed points of systems on arbitrarily large networks meeting certain criteria. This approach can also be used without computing the full equilibrium set, which may grow very large in some cases. For example, one can use this method to check the existence and total number of equilibria, or to find equilibria that are optimal with respect to a given cost function. We demonstrate the potential capabilities of this approach with examples in two scientific domains: computing the number of fixed points in brain networks and finding the minimal energy conformations of lattice-based protein folding models.</description><subject>Life Sciences–Engineering interface</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUblOxDAQtRCIu6VELmmyjO3YWTdIaMUlIdFAbTnJZDEkcbC9XF9PImAF1Vxv3hyPkCMGMwZ6fhqia2YcOMyAcbVBdlmR80wqxTfX_lzvkL0YnwBEIaTcJjuCawCu9S65X_huWCXXL6nta-qH5Dr3OYX-FQO1bUsb9451NnjXp0h9Q2sXq4AJafyICbsx19PWhiXSHtObD8_xgGw1to14-GP3ycPlxf3iOru9u7pZnN9mVa5kygpUFkpggCUKQIsNryosG5ELpQo7Bz3uL5lgVkmtgdeKQS2LUkE1B6FrsU_OvnmHVdlhXWGfgm3NEFxnw4fx1pn_ld49mqV_NYUUCqQeCU5-CIJ_WWFMphuPw7a1PfpVNDzPGS-0UnKEzr6hVfAxBmzWYxiYSQozSWEmKcwkxdhw_He5Nfz39-ILk1eHIA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Riehl, James R</creator><creator>Zimmerman, Maxwell I</creator><creator>Singh, Matthew F</creator><creator>Bowman, Gregory R</creator><creator>Ching, ShiNung</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9555-7036</orcidid></search><sort><creationdate>20200901</creationdate><title>Computing and optimizing over all fixed-points of discrete systems on large networks</title><author>Riehl, James R ; Zimmerman, Maxwell I ; Singh, Matthew F ; Bowman, Gregory R ; Ching, ShiNung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-7e6a0b010ebe30eaef2ccebf343667a8097425131a659902d610d57b60c8039d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Life Sciences–Engineering interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riehl, James R</creatorcontrib><creatorcontrib>Zimmerman, Maxwell I</creatorcontrib><creatorcontrib>Singh, Matthew F</creatorcontrib><creatorcontrib>Bowman, Gregory R</creatorcontrib><creatorcontrib>Ching, ShiNung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riehl, James R</au><au>Zimmerman, Maxwell I</au><au>Singh, Matthew F</au><au>Bowman, Gregory R</au><au>Ching, ShiNung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing and optimizing over all fixed-points of discrete systems on large networks</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>17</volume><issue>170</issue><spage>20200126</spage><epage>20200126</epage><pages>20200126-20200126</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet finding them can be computationally challenging. Here, we show how to efficiently compute all equilibrium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning, we recursively decompose the original problem into a set of smaller, simpler problems that are easy to compute, and whose solutions combine to yield the full equilibrium set. This makes it possible to find the fixed points of systems on arbitrarily large networks meeting certain criteria. This approach can also be used without computing the full equilibrium set, which may grow very large in some cases. For example, one can use this method to check the existence and total number of equilibria, or to find equilibria that are optimal with respect to a given cost function. We demonstrate the potential capabilities of this approach with examples in two scientific domains: computing the number of fixed points in brain networks and finding the minimal energy conformations of lattice-based protein folding models.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>32900299</pmid><doi>10.1098/rsif.2020.0126</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9555-7036</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2020-09, Vol.17 (170), p.20200126-20200126 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7536059 |
source | PubMed Central |
subjects | Life Sciences–Engineering interface |
title | Computing and optimizing over all fixed-points of discrete systems on large networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20and%20optimizing%20over%20all%20fixed-points%20of%20discrete%20systems%20on%20large%20networks&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Riehl,%20James%20R&rft.date=2020-09-01&rft.volume=17&rft.issue=170&rft.spage=20200126&rft.epage=20200126&rft.pages=20200126-20200126&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2020.0126&rft_dat=%3Cproquest_pubme%3E2441279665%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441279665&rft_id=info:pmid/32900299&rfr_iscdi=true |