COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis
Light and the circadian clock are two essential external and internal cues affecting seedling development. COLD-REGULATED GENE27 (COR27), which is regulated by cold temperatures and light signals, functions as a key regulator of the circadian clock. Here, we report that COR27 acts as a negative regu...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2020-10, Vol.32 (10), p.3155-3169 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3169 |
---|---|
container_issue | 10 |
container_start_page | 3155 |
container_title | The Plant cell |
container_volume | 32 |
creator | Zhu, Wei Zhou, Hua Lin, Fang Zhao, Xianhai Jiang, Yan Xu, Dongqing Deng, Xing Wang |
description | Light and the circadian clock are two essential external and internal cues affecting seedling development. COLD-REGULATED GENE27 (COR27), which is regulated by cold temperatures and light signals, functions as a key regulator of the circadian clock. Here, we report that COR27 acts as a negative regulator of light signaling. COR27 physically interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYTOCHROME A1 (SPA1) E3 ubiquitin ligase complex and undergoes COP1-mediated degradation via the 26S proteasome system in the dark.
mutant seedlings exhibit shorter hypocotyls, while transgenic lines overexpressing
show elongated hypocotyls in the light. In addition, light induces the accumulation of COR27. On one hand, accumulated COR27 interacts with ELONGATED HYPOCOTYL5 (HY5) to repress HY5 DNA binding activity. On the other hand, COR27 associates with the chromatin at the
(
) promoter region and upregulates
expression in a circadian clock-dependent manner. Together, our findings reveal a mechanistic framework whereby COR27 represses photomorphogenesis in the light and provide insights toward how light and the circadian clock synergistically control hypocotyl growth. |
doi_str_mv | 10.1105/tpc.20.00192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7534470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429776729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-8dcf7338449a90f552646399159d17db648f896e5960fe3d45adc371982c01ab3</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EoqXlxhn5yIEs_ozjC9IqDdtKUYtoK3GzvLaza8jGqe0t2n-PoaWipxlpHr0zoweAdxgtMEb8U57NgqAFQliSF-AYc0oqIpvvL0uPGKpYzfEReJPSD1QYgeVrcESJoIRiegzu26v-rPrWrW775U13BlfdZUcEvJiy20SdXYLXfjPpMcEhhh3s_WaboZ4szFsHWx-Ntl5PsB2D-QlzgF8LFbKD54c5mJAPI1zF8CtvoZ_gMuq1t2FOPp2CV0MJdW8f6wm4_dLdtOdVf7W6aJd9ZRhHuWqsGQSlDWNSSzRwTmpWUykxlxYLu65ZMzSydlzWaHDUMq6toeXHhhiE9ZqegM8PufN-vXPWuClHPao5-p2OBxW0V88nk9-qTbhXglPGBCoBHx4DYrjbu5TVzifjxlFPLuyTIoxIIWpBZEE_PqAmhpSiG57WYKT-qFJFlSJI_VVV8Pf_n_YE_3NDfwMIY46o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429776729</pqid></control><display><type>article</type><title>COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Wei ; Zhou, Hua ; Lin, Fang ; Zhao, Xianhai ; Jiang, Yan ; Xu, Dongqing ; Deng, Xing Wang</creator><creatorcontrib>Zhu, Wei ; Zhou, Hua ; Lin, Fang ; Zhao, Xianhai ; Jiang, Yan ; Xu, Dongqing ; Deng, Xing Wang</creatorcontrib><description>Light and the circadian clock are two essential external and internal cues affecting seedling development. COLD-REGULATED GENE27 (COR27), which is regulated by cold temperatures and light signals, functions as a key regulator of the circadian clock. Here, we report that COR27 acts as a negative regulator of light signaling. COR27 physically interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYTOCHROME A1 (SPA1) E3 ubiquitin ligase complex and undergoes COP1-mediated degradation via the 26S proteasome system in the dark.
mutant seedlings exhibit shorter hypocotyls, while transgenic lines overexpressing
show elongated hypocotyls in the light. In addition, light induces the accumulation of COR27. On one hand, accumulated COR27 interacts with ELONGATED HYPOCOTYL5 (HY5) to repress HY5 DNA binding activity. On the other hand, COR27 associates with the chromatin at the
(
) promoter region and upregulates
expression in a circadian clock-dependent manner. Together, our findings reveal a mechanistic framework whereby COR27 represses photomorphogenesis in the light and provide insights toward how light and the circadian clock synergistically control hypocotyl growth.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.20.00192</identifier><identifier>PMID: 32732313</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Circadian Clocks - genetics ; Circadian Clocks - physiology ; Gene Expression Regulation, Plant ; Hypocotyl - genetics ; Hypocotyl - growth & development ; Light Signal Transduction - genetics ; Light Signal Transduction - physiology ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Proteasome Endopeptidase Complex - genetics ; Proteasome Endopeptidase Complex - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>The Plant cell, 2020-10, Vol.32 (10), p.3155-3169</ispartof><rights>2020 American Society of Plant Biologists. All rights reserved.</rights><rights>2020 American Society of Plant Biologists. All rights reserved. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-8dcf7338449a90f552646399159d17db648f896e5960fe3d45adc371982c01ab3</citedby><orcidid>0000-0002-2080-5629 ; 0000-0003-0590-8993 ; 0000-0002-4944-058X ; 0000-0002-7498-6568 ; 0000-0003-4769-8648 ; 0000-0001-8802-0599 ; 0000-0002-2478-5231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32732313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Lin, Fang</creatorcontrib><creatorcontrib>Zhao, Xianhai</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Xu, Dongqing</creatorcontrib><creatorcontrib>Deng, Xing Wang</creatorcontrib><title>COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Light and the circadian clock are two essential external and internal cues affecting seedling development. COLD-REGULATED GENE27 (COR27), which is regulated by cold temperatures and light signals, functions as a key regulator of the circadian clock. Here, we report that COR27 acts as a negative regulator of light signaling. COR27 physically interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYTOCHROME A1 (SPA1) E3 ubiquitin ligase complex and undergoes COP1-mediated degradation via the 26S proteasome system in the dark.
mutant seedlings exhibit shorter hypocotyls, while transgenic lines overexpressing
show elongated hypocotyls in the light. In addition, light induces the accumulation of COR27. On one hand, accumulated COR27 interacts with ELONGATED HYPOCOTYL5 (HY5) to repress HY5 DNA binding activity. On the other hand, COR27 associates with the chromatin at the
(
) promoter region and upregulates
expression in a circadian clock-dependent manner. Together, our findings reveal a mechanistic framework whereby COR27 represses photomorphogenesis in the light and provide insights toward how light and the circadian clock synergistically control hypocotyl growth.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Clocks - physiology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Hypocotyl - genetics</subject><subject>Hypocotyl - growth & development</subject><subject>Light Signal Transduction - genetics</subject><subject>Light Signal Transduction - physiology</subject><subject>Plants, Genetically Modified</subject><subject>Promoter Regions, Genetic</subject><subject>Proteasome Endopeptidase Complex - genetics</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EoqXlxhn5yIEs_ozjC9IqDdtKUYtoK3GzvLaza8jGqe0t2n-PoaWipxlpHr0zoweAdxgtMEb8U57NgqAFQliSF-AYc0oqIpvvL0uPGKpYzfEReJPSD1QYgeVrcESJoIRiegzu26v-rPrWrW775U13BlfdZUcEvJiy20SdXYLXfjPpMcEhhh3s_WaboZ4szFsHWx-Ntl5PsB2D-QlzgF8LFbKD54c5mJAPI1zF8CtvoZ_gMuq1t2FOPp2CV0MJdW8f6wm4_dLdtOdVf7W6aJd9ZRhHuWqsGQSlDWNSSzRwTmpWUykxlxYLu65ZMzSydlzWaHDUMq6toeXHhhiE9ZqegM8PufN-vXPWuClHPao5-p2OBxW0V88nk9-qTbhXglPGBCoBHx4DYrjbu5TVzifjxlFPLuyTIoxIIWpBZEE_PqAmhpSiG57WYKT-qFJFlSJI_VVV8Pf_n_YE_3NDfwMIY46o</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Zhu, Wei</creator><creator>Zhou, Hua</creator><creator>Lin, Fang</creator><creator>Zhao, Xianhai</creator><creator>Jiang, Yan</creator><creator>Xu, Dongqing</creator><creator>Deng, Xing Wang</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2080-5629</orcidid><orcidid>https://orcid.org/0000-0003-0590-8993</orcidid><orcidid>https://orcid.org/0000-0002-4944-058X</orcidid><orcidid>https://orcid.org/0000-0002-7498-6568</orcidid><orcidid>https://orcid.org/0000-0003-4769-8648</orcidid><orcidid>https://orcid.org/0000-0001-8802-0599</orcidid><orcidid>https://orcid.org/0000-0002-2478-5231</orcidid></search><sort><creationdate>20201001</creationdate><title>COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis</title><author>Zhu, Wei ; Zhou, Hua ; Lin, Fang ; Zhao, Xianhai ; Jiang, Yan ; Xu, Dongqing ; Deng, Xing Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-8dcf7338449a90f552646399159d17db648f896e5960fe3d45adc371982c01ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Clocks - physiology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Hypocotyl - genetics</topic><topic>Hypocotyl - growth & development</topic><topic>Light Signal Transduction - genetics</topic><topic>Light Signal Transduction - physiology</topic><topic>Plants, Genetically Modified</topic><topic>Promoter Regions, Genetic</topic><topic>Proteasome Endopeptidase Complex - genetics</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Lin, Fang</creatorcontrib><creatorcontrib>Zhao, Xianhai</creatorcontrib><creatorcontrib>Jiang, Yan</creatorcontrib><creatorcontrib>Xu, Dongqing</creatorcontrib><creatorcontrib>Deng, Xing Wang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wei</au><au>Zhou, Hua</au><au>Lin, Fang</au><au>Zhao, Xianhai</au><au>Jiang, Yan</au><au>Xu, Dongqing</au><au>Deng, Xing Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>32</volume><issue>10</issue><spage>3155</spage><epage>3169</epage><pages>3155-3169</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Light and the circadian clock are two essential external and internal cues affecting seedling development. COLD-REGULATED GENE27 (COR27), which is regulated by cold temperatures and light signals, functions as a key regulator of the circadian clock. Here, we report that COR27 acts as a negative regulator of light signaling. COR27 physically interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYTOCHROME A1 (SPA1) E3 ubiquitin ligase complex and undergoes COP1-mediated degradation via the 26S proteasome system in the dark.
mutant seedlings exhibit shorter hypocotyls, while transgenic lines overexpressing
show elongated hypocotyls in the light. In addition, light induces the accumulation of COR27. On one hand, accumulated COR27 interacts with ELONGATED HYPOCOTYL5 (HY5) to repress HY5 DNA binding activity. On the other hand, COR27 associates with the chromatin at the
(
) promoter region and upregulates
expression in a circadian clock-dependent manner. Together, our findings reveal a mechanistic framework whereby COR27 represses photomorphogenesis in the light and provide insights toward how light and the circadian clock synergistically control hypocotyl growth.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>32732313</pmid><doi>10.1105/tpc.20.00192</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2080-5629</orcidid><orcidid>https://orcid.org/0000-0003-0590-8993</orcidid><orcidid>https://orcid.org/0000-0002-4944-058X</orcidid><orcidid>https://orcid.org/0000-0002-7498-6568</orcidid><orcidid>https://orcid.org/0000-0003-4769-8648</orcidid><orcidid>https://orcid.org/0000-0001-8802-0599</orcidid><orcidid>https://orcid.org/0000-0002-2478-5231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 2020-10, Vol.32 (10), p.3155-3169 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7534470 |
source | MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Basic-Leucine Zipper Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - metabolism Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Circadian Clocks - genetics Circadian Clocks - physiology Gene Expression Regulation, Plant Hypocotyl - genetics Hypocotyl - growth & development Light Signal Transduction - genetics Light Signal Transduction - physiology Plants, Genetically Modified Promoter Regions, Genetic Proteasome Endopeptidase Complex - genetics Proteasome Endopeptidase Complex - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism |
title | COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COLD-REGULATED%20GENE27%20Integrates%20Signals%20from%20Light%20and%20the%20Circadian%20Clock%20to%20Promote%20Hypocotyl%20Growth%20in%20Arabidopsis&rft.jtitle=The%20Plant%20cell&rft.au=Zhu,%20Wei&rft.date=2020-10-01&rft.volume=32&rft.issue=10&rft.spage=3155&rft.epage=3169&rft.pages=3155-3169&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.20.00192&rft_dat=%3Cproquest_pubme%3E2429776729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429776729&rft_id=info:pmid/32732313&rfr_iscdi=true |