Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization

Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2020-09, Vol.2020 (2020), p.1-11
Hauptverfasser: Sarhan, Shahenda, Shams, Mahmoud Y., Nasr, Aida A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2020
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2020
creator Sarhan, Shahenda
Shams, Mahmoud Y.
Nasr, Aida A.
description Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboost, and Cascade Object Detector while others concentrated on the recognition systems as support vector machine and deep convolution neural networks. In this paper, a combined adaptive deep learning vector quantization (CADLVQ) classifier is proposed. The proposed classifier has boosted the weakness of the adaptive deep learning vector quantization classifiers through using the majority voting algorithm with the speeded up robust feature extractor. Experimental results indicate that, the proposed classifier provided promising results in terms of sensitivity, specificity, precision, and accuracy compared to recent approaches in deep learning, statistical, and classical neural networks. Finally, the comparison is empirically performed using confusion matrix to ensure the reliability and robustness of the proposed system compared to the state-of art.
doi_str_mv 10.1155/2020/8821868
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7532404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697113624</galeid><sourcerecordid>A697113624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-bbf3d912f084924386992eb0a69e9e26320626472e2825abaa94b4d4d930c5e93</originalsourceid><addsrcrecordid>eNqFkctrFEEQxhtRzENvnmXAi6Bj-v24BNbVqLAiSvTa9PTUbDrMdo_TMwn619vDLgl68VQF9auvvuJD6BnBbwgR4oxiis-0pkRL_QAdE6lVLahiD-96KY7QSc7XGAslMH2MjhjD1JTtY3T5ee6nMKQM1YXzUH0Dn7YxTCHF-q3L0FbrtGtCLM2qdcMUbqB6BzBUG3BjDHFb_QA_pbH6Ors4hd9u2XyCHnWuz_D0UE_R94v3l-uP9ebLh0_r1ab2XMmpbpqOtYbQDmtuKGdaGkOhwU4aMEAlo1hSyRUFqqlwjXOGN7zlrWHYCzDsFJ3vdYe52UHrIU6j6-0whp0bf9nkgv17EsOV3aYbqwSjHPMi8PIgMKafM-TJ7kL20PcuQpqzpbwYk4RgWdAX_6DXaR5jeW-hij-FFbuntq4HG2KXyl2_iNqVNIoQJuly9vWe8mPKeYTuzjLBdgnVLqHaQ6gFf7XHr0Js3W34H_18T0NhoHP3NGFaC87-AG0Jp7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448257073</pqid></control><display><type>article</type><title>Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization</title><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Sarhan, Shahenda ; Shams, Mahmoud Y. ; Nasr, Aida A.</creator><contributor>Doulamis, Anastasios D. ; Anastasios D Doulamis</contributor><creatorcontrib>Sarhan, Shahenda ; Shams, Mahmoud Y. ; Nasr, Aida A. ; Doulamis, Anastasios D. ; Anastasios D Doulamis</creatorcontrib><description>Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboost, and Cascade Object Detector while others concentrated on the recognition systems as support vector machine and deep convolution neural networks. In this paper, a combined adaptive deep learning vector quantization (CADLVQ) classifier is proposed. The proposed classifier has boosted the weakness of the adaptive deep learning vector quantization classifiers through using the majority voting algorithm with the speeded up robust feature extractor. Experimental results indicate that, the proposed classifier provided promising results in terms of sensitivity, specificity, precision, and accuracy compared to recent approaches in deep learning, statistical, and classical neural networks. Finally, the comparison is empirically performed using confusion matrix to ensure the reliability and robustness of the proposed system compared to the state-of art.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2020/8821868</identifier><identifier>PMID: 33029115</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Adaptive learning ; Adaptive systems ; Algorithms ; Analysis ; Artificial neural networks ; Biometry ; Classification ; Classifiers ; Convolution ; Decision trees ; Deep learning ; Detectors ; Face recognition ; Facial recognition technology ; Feature extraction ; Learning vector quantization networks ; Machine learning ; Neural networks ; Object recognition ; Pattern recognition ; Support vector machines ; Video compression</subject><ispartof>Computational intelligence and neuroscience, 2020-09, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Shahenda Sarhan et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Shahenda Sarhan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Shahenda Sarhan et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-bbf3d912f084924386992eb0a69e9e26320626472e2825abaa94b4d4d930c5e93</citedby><cites>FETCH-LOGICAL-c476t-bbf3d912f084924386992eb0a69e9e26320626472e2825abaa94b4d4d930c5e93</cites><orcidid>0000-0003-1823-9389 ; 0000-0003-3021-5902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532404/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532404/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><contributor>Doulamis, Anastasios D.</contributor><contributor>Anastasios D Doulamis</contributor><creatorcontrib>Sarhan, Shahenda</creatorcontrib><creatorcontrib>Shams, Mahmoud Y.</creatorcontrib><creatorcontrib>Nasr, Aida A.</creatorcontrib><title>Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization</title><title>Computational intelligence and neuroscience</title><description>Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboost, and Cascade Object Detector while others concentrated on the recognition systems as support vector machine and deep convolution neural networks. In this paper, a combined adaptive deep learning vector quantization (CADLVQ) classifier is proposed. The proposed classifier has boosted the weakness of the adaptive deep learning vector quantization classifiers through using the majority voting algorithm with the speeded up robust feature extractor. Experimental results indicate that, the proposed classifier provided promising results in terms of sensitivity, specificity, precision, and accuracy compared to recent approaches in deep learning, statistical, and classical neural networks. Finally, the comparison is empirically performed using confusion matrix to ensure the reliability and robustness of the proposed system compared to the state-of art.</description><subject>Accuracy</subject><subject>Adaptive learning</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Biometry</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Convolution</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>Feature extraction</subject><subject>Learning vector quantization networks</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Support vector machines</subject><subject>Video compression</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkctrFEEQxhtRzENvnmXAi6Bj-v24BNbVqLAiSvTa9PTUbDrMdo_TMwn619vDLgl68VQF9auvvuJD6BnBbwgR4oxiis-0pkRL_QAdE6lVLahiD-96KY7QSc7XGAslMH2MjhjD1JTtY3T5ee6nMKQM1YXzUH0Dn7YxTCHF-q3L0FbrtGtCLM2qdcMUbqB6BzBUG3BjDHFb_QA_pbH6Ors4hd9u2XyCHnWuz_D0UE_R94v3l-uP9ebLh0_r1ab2XMmpbpqOtYbQDmtuKGdaGkOhwU4aMEAlo1hSyRUFqqlwjXOGN7zlrWHYCzDsFJ3vdYe52UHrIU6j6-0whp0bf9nkgv17EsOV3aYbqwSjHPMi8PIgMKafM-TJ7kL20PcuQpqzpbwYk4RgWdAX_6DXaR5jeW-hij-FFbuntq4HG2KXyl2_iNqVNIoQJuly9vWe8mPKeYTuzjLBdgnVLqHaQ6gFf7XHr0Js3W34H_18T0NhoHP3NGFaC87-AG0Jp7Y</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Sarhan, Shahenda</creator><creator>Shams, Mahmoud Y.</creator><creator>Nasr, Aida A.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1823-9389</orcidid><orcidid>https://orcid.org/0000-0003-3021-5902</orcidid></search><sort><creationdate>20200924</creationdate><title>Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization</title><author>Sarhan, Shahenda ; Shams, Mahmoud Y. ; Nasr, Aida A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-bbf3d912f084924386992eb0a69e9e26320626472e2825abaa94b4d4d930c5e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adaptive learning</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Biometry</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Convolution</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>Feature extraction</topic><topic>Learning vector quantization networks</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Support vector machines</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarhan, Shahenda</creatorcontrib><creatorcontrib>Shams, Mahmoud Y.</creatorcontrib><creatorcontrib>Nasr, Aida A.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarhan, Shahenda</au><au>Shams, Mahmoud Y.</au><au>Nasr, Aida A.</au><au>Doulamis, Anastasios D.</au><au>Anastasios D Doulamis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2020-09-24</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboost, and Cascade Object Detector while others concentrated on the recognition systems as support vector machine and deep convolution neural networks. In this paper, a combined adaptive deep learning vector quantization (CADLVQ) classifier is proposed. The proposed classifier has boosted the weakness of the adaptive deep learning vector quantization classifiers through using the majority voting algorithm with the speeded up robust feature extractor. Experimental results indicate that, the proposed classifier provided promising results in terms of sensitivity, specificity, precision, and accuracy compared to recent approaches in deep learning, statistical, and classical neural networks. Finally, the comparison is empirically performed using confusion matrix to ensure the reliability and robustness of the proposed system compared to the state-of art.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>33029115</pmid><doi>10.1155/2020/8821868</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1823-9389</orcidid><orcidid>https://orcid.org/0000-0003-3021-5902</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2020-09, Vol.2020 (2020), p.1-11
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7532404
source Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library; PubMed Central Open Access
subjects Accuracy
Adaptive learning
Adaptive systems
Algorithms
Analysis
Artificial neural networks
Biometry
Classification
Classifiers
Convolution
Decision trees
Deep learning
Detectors
Face recognition
Facial recognition technology
Feature extraction
Learning vector quantization networks
Machine learning
Neural networks
Object recognition
Pattern recognition
Support vector machines
Video compression
title Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipose%20Face%20Recognition-Based%20Combined%20Adaptive%20Deep%20Learning%20Vector%20Quantization&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Sarhan,%20Shahenda&rft.date=2020-09-24&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2020/8821868&rft_dat=%3Cgale_pubme%3EA697113624%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448257073&rft_id=info:pmid/33029115&rft_galeid=A697113624&rfr_iscdi=true