Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization
Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboos...
Gespeichert in:
Veröffentlicht in: | Computational intelligence and neuroscience 2020-09, Vol.2020 (2020), p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Computational intelligence and neuroscience |
container_volume | 2020 |
creator | Sarhan, Shahenda Shams, Mahmoud Y. Nasr, Aida A. |
description | Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboost, and Cascade Object Detector while others concentrated on the recognition systems as support vector machine and deep convolution neural networks. In this paper, a combined adaptive deep learning vector quantization (CADLVQ) classifier is proposed. The proposed classifier has boosted the weakness of the adaptive deep learning vector quantization classifiers through using the majority voting algorithm with the speeded up robust feature extractor. Experimental results indicate that, the proposed classifier provided promising results in terms of sensitivity, specificity, precision, and accuracy compared to recent approaches in deep learning, statistical, and classical neural networks. Finally, the comparison is empirically performed using confusion matrix to ensure the reliability and robustness of the proposed system compared to the state-of art. |
doi_str_mv | 10.1155/2020/8821868 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7532404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697113624</galeid><sourcerecordid>A697113624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-bbf3d912f084924386992eb0a69e9e26320626472e2825abaa94b4d4d930c5e93</originalsourceid><addsrcrecordid>eNqFkctrFEEQxhtRzENvnmXAi6Bj-v24BNbVqLAiSvTa9PTUbDrMdo_TMwn619vDLgl68VQF9auvvuJD6BnBbwgR4oxiis-0pkRL_QAdE6lVLahiD-96KY7QSc7XGAslMH2MjhjD1JTtY3T5ee6nMKQM1YXzUH0Dn7YxTCHF-q3L0FbrtGtCLM2qdcMUbqB6BzBUG3BjDHFb_QA_pbH6Ors4hd9u2XyCHnWuz_D0UE_R94v3l-uP9ebLh0_r1ab2XMmpbpqOtYbQDmtuKGdaGkOhwU4aMEAlo1hSyRUFqqlwjXOGN7zlrWHYCzDsFJ3vdYe52UHrIU6j6-0whp0bf9nkgv17EsOV3aYbqwSjHPMi8PIgMKafM-TJ7kL20PcuQpqzpbwYk4RgWdAX_6DXaR5jeW-hij-FFbuntq4HG2KXyl2_iNqVNIoQJuly9vWe8mPKeYTuzjLBdgnVLqHaQ6gFf7XHr0Js3W34H_18T0NhoHP3NGFaC87-AG0Jp7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448257073</pqid></control><display><type>article</type><title>Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization</title><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Sarhan, Shahenda ; Shams, Mahmoud Y. ; Nasr, Aida A.</creator><contributor>Doulamis, Anastasios D. ; Anastasios D Doulamis</contributor><creatorcontrib>Sarhan, Shahenda ; Shams, Mahmoud Y. ; Nasr, Aida A. ; Doulamis, Anastasios D. ; Anastasios D Doulamis</creatorcontrib><description>Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboost, and Cascade Object Detector while others concentrated on the recognition systems as support vector machine and deep convolution neural networks. In this paper, a combined adaptive deep learning vector quantization (CADLVQ) classifier is proposed. The proposed classifier has boosted the weakness of the adaptive deep learning vector quantization classifiers through using the majority voting algorithm with the speeded up robust feature extractor. Experimental results indicate that, the proposed classifier provided promising results in terms of sensitivity, specificity, precision, and accuracy compared to recent approaches in deep learning, statistical, and classical neural networks. Finally, the comparison is empirically performed using confusion matrix to ensure the reliability and robustness of the proposed system compared to the state-of art.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2020/8821868</identifier><identifier>PMID: 33029115</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Adaptive learning ; Adaptive systems ; Algorithms ; Analysis ; Artificial neural networks ; Biometry ; Classification ; Classifiers ; Convolution ; Decision trees ; Deep learning ; Detectors ; Face recognition ; Facial recognition technology ; Feature extraction ; Learning vector quantization networks ; Machine learning ; Neural networks ; Object recognition ; Pattern recognition ; Support vector machines ; Video compression</subject><ispartof>Computational intelligence and neuroscience, 2020-09, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Shahenda Sarhan et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Shahenda Sarhan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Shahenda Sarhan et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-bbf3d912f084924386992eb0a69e9e26320626472e2825abaa94b4d4d930c5e93</citedby><cites>FETCH-LOGICAL-c476t-bbf3d912f084924386992eb0a69e9e26320626472e2825abaa94b4d4d930c5e93</cites><orcidid>0000-0003-1823-9389 ; 0000-0003-3021-5902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532404/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532404/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><contributor>Doulamis, Anastasios D.</contributor><contributor>Anastasios D Doulamis</contributor><creatorcontrib>Sarhan, Shahenda</creatorcontrib><creatorcontrib>Shams, Mahmoud Y.</creatorcontrib><creatorcontrib>Nasr, Aida A.</creatorcontrib><title>Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization</title><title>Computational intelligence and neuroscience</title><description>Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboost, and Cascade Object Detector while others concentrated on the recognition systems as support vector machine and deep convolution neural networks. In this paper, a combined adaptive deep learning vector quantization (CADLVQ) classifier is proposed. The proposed classifier has boosted the weakness of the adaptive deep learning vector quantization classifiers through using the majority voting algorithm with the speeded up robust feature extractor. Experimental results indicate that, the proposed classifier provided promising results in terms of sensitivity, specificity, precision, and accuracy compared to recent approaches in deep learning, statistical, and classical neural networks. Finally, the comparison is empirically performed using confusion matrix to ensure the reliability and robustness of the proposed system compared to the state-of art.</description><subject>Accuracy</subject><subject>Adaptive learning</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Biometry</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Convolution</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Face recognition</subject><subject>Facial recognition technology</subject><subject>Feature extraction</subject><subject>Learning vector quantization networks</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Support vector machines</subject><subject>Video compression</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkctrFEEQxhtRzENvnmXAi6Bj-v24BNbVqLAiSvTa9PTUbDrMdo_TMwn619vDLgl68VQF9auvvuJD6BnBbwgR4oxiis-0pkRL_QAdE6lVLahiD-96KY7QSc7XGAslMH2MjhjD1JTtY3T5ee6nMKQM1YXzUH0Dn7YxTCHF-q3L0FbrtGtCLM2qdcMUbqB6BzBUG3BjDHFb_QA_pbH6Ors4hd9u2XyCHnWuz_D0UE_R94v3l-uP9ebLh0_r1ab2XMmpbpqOtYbQDmtuKGdaGkOhwU4aMEAlo1hSyRUFqqlwjXOGN7zlrWHYCzDsFJ3vdYe52UHrIU6j6-0whp0bf9nkgv17EsOV3aYbqwSjHPMi8PIgMKafM-TJ7kL20PcuQpqzpbwYk4RgWdAX_6DXaR5jeW-hij-FFbuntq4HG2KXyl2_iNqVNIoQJuly9vWe8mPKeYTuzjLBdgnVLqHaQ6gFf7XHr0Js3W34H_18T0NhoHP3NGFaC87-AG0Jp7Y</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Sarhan, Shahenda</creator><creator>Shams, Mahmoud Y.</creator><creator>Nasr, Aida A.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1823-9389</orcidid><orcidid>https://orcid.org/0000-0003-3021-5902</orcidid></search><sort><creationdate>20200924</creationdate><title>Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization</title><author>Sarhan, Shahenda ; Shams, Mahmoud Y. ; Nasr, Aida A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-bbf3d912f084924386992eb0a69e9e26320626472e2825abaa94b4d4d930c5e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adaptive learning</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Biometry</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Convolution</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Face recognition</topic><topic>Facial recognition technology</topic><topic>Feature extraction</topic><topic>Learning vector quantization networks</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Support vector machines</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarhan, Shahenda</creatorcontrib><creatorcontrib>Shams, Mahmoud Y.</creatorcontrib><creatorcontrib>Nasr, Aida A.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarhan, Shahenda</au><au>Shams, Mahmoud Y.</au><au>Nasr, Aida A.</au><au>Doulamis, Anastasios D.</au><au>Anastasios D Doulamis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2020-09-24</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Multipose face recognition system is one of the recent challenges faced by the researchers interested in security applications. Different researches have been introduced discussing the accuracy improvement of multipose face recognition through enhancing the face detector as Viola-Jones, Real Adaboost, and Cascade Object Detector while others concentrated on the recognition systems as support vector machine and deep convolution neural networks. In this paper, a combined adaptive deep learning vector quantization (CADLVQ) classifier is proposed. The proposed classifier has boosted the weakness of the adaptive deep learning vector quantization classifiers through using the majority voting algorithm with the speeded up robust feature extractor. Experimental results indicate that, the proposed classifier provided promising results in terms of sensitivity, specificity, precision, and accuracy compared to recent approaches in deep learning, statistical, and classical neural networks. Finally, the comparison is empirically performed using confusion matrix to ensure the reliability and robustness of the proposed system compared to the state-of art.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>33029115</pmid><doi>10.1155/2020/8821868</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1823-9389</orcidid><orcidid>https://orcid.org/0000-0003-3021-5902</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational intelligence and neuroscience, 2020-09, Vol.2020 (2020), p.1-11 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7532404 |
source | Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Accuracy Adaptive learning Adaptive systems Algorithms Analysis Artificial neural networks Biometry Classification Classifiers Convolution Decision trees Deep learning Detectors Face recognition Facial recognition technology Feature extraction Learning vector quantization networks Machine learning Neural networks Object recognition Pattern recognition Support vector machines Video compression |
title | Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipose%20Face%20Recognition-Based%20Combined%20Adaptive%20Deep%20Learning%20Vector%20Quantization&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Sarhan,%20Shahenda&rft.date=2020-09-24&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2020/8821868&rft_dat=%3Cgale_pubme%3EA697113624%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448257073&rft_id=info:pmid/33029115&rft_galeid=A697113624&rfr_iscdi=true |