A dynamic role for dopamine receptors in the control of mammalian spinal networks
Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D 1 and D 2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in m...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-10, Vol.10 (1), p.16429-16429, Article 16429 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16429 |
---|---|
container_issue | 1 |
container_start_page | 16429 |
container_title | Scientific reports |
container_volume | 10 |
creator | Sharples, Simon A. Burma, Nicole E. Borowska-Fielding, Joanna Kwok, Charlie H. T. Eaton, Shane E. A. Baker, Glen B. Jean-Xavier, Celine Zhang, Ying Trang, Tuan Whelan, Patrick J. |
description | Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D
1
and D
2
receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D
1
-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D
2
receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D
2
, D
3
, D
4
and α
2
receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D
1
and inhibitory D
2
receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability. |
doi_str_mv | 10.1038/s41598-020-73230-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7532218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449454780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fbb406871239a89b11b92310a5d5fb1688d5c41d4073dbd2e77e0f8ca5c0bf0f3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMoKrp_wIMEvHipTr626UUQ8QsEEfQc0jTRapvUpOvivze6un4czGVC5pk3M_MitEPggACTh4kTUckCKBQlowyK-QrapMBFQRmlqz_uG2iS0iPkI2jFSbWONhgDqDinm-jmGDevXvetwTF0FrsQcROG_OAtjtbYYQwx4dbj8cFiE_yYMRwc7nXf667VHqeh9brD3o7zEJ_SNlpzukt28hm30N3Z6e3JRXF1fX55cnxVGF7ysXB1zWEqS0JZpWVVE1JXlBHQohGuJlMpG2E4aTiUrKkbasvSgpNGCwO1A8e20NFCd5jVvW2Mza3pTg2x7XV8VUG36nfGtw_qPryoUuSlEJkF9j8FYnie2TSqvk3Gdp32NsySopxLTohg04zu_UEfwyzmqT-oigteSsgUXVAmhpSidctmCKh309TCNJVNUx-mqXku2v05xrLky6IMsAWQcsrf2_j99z-yb9uVo1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449454780</pqid></control><display><type>article</type><title>A dynamic role for dopamine receptors in the control of mammalian spinal networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharples, Simon A. ; Burma, Nicole E. ; Borowska-Fielding, Joanna ; Kwok, Charlie H. T. ; Eaton, Shane E. A. ; Baker, Glen B. ; Jean-Xavier, Celine ; Zhang, Ying ; Trang, Tuan ; Whelan, Patrick J.</creator><creatorcontrib>Sharples, Simon A. ; Burma, Nicole E. ; Borowska-Fielding, Joanna ; Kwok, Charlie H. T. ; Eaton, Shane E. A. ; Baker, Glen B. ; Jean-Xavier, Celine ; Zhang, Ying ; Trang, Tuan ; Whelan, Patrick J.</creatorcontrib><description>Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D
1
and D
2
receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D
1
-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D
2
receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D
2
, D
3
, D
4
and α
2
receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D
1
and inhibitory D
2
receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-73230-w</identifier><identifier>PMID: 33009442</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2632/1823 ; 631/378/2632/2633 ; Animals ; Corpus Striatum - metabolism ; Developmental stages ; Dopamine ; Dopamine - metabolism ; Dopamine D1 receptors ; Dopamine D2 receptors ; Dopamine D3 receptors ; Dopamine D4 receptors ; Excitability ; Humanities and Social Sciences ; Male ; Mammals ; Mammals - metabolism ; Mice ; Mice, Inbred C57BL ; Motor neurons ; multidisciplinary ; Neonates ; Neostriatum ; Neural networks ; Neuromodulation ; Neurotransmitter Agents - metabolism ; Receptors, Dopamine - metabolism ; Science ; Science (multidisciplinary) ; Spinal cord ; Spinal Cord - metabolism</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.16429-16429, Article 16429</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fbb406871239a89b11b92310a5d5fb1688d5c41d4073dbd2e77e0f8ca5c0bf0f3</citedby><cites>FETCH-LOGICAL-c474t-fbb406871239a89b11b92310a5d5fb1688d5c41d4073dbd2e77e0f8ca5c0bf0f3</cites><orcidid>0000-0002-1234-5415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532218/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532218/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33009442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharples, Simon A.</creatorcontrib><creatorcontrib>Burma, Nicole E.</creatorcontrib><creatorcontrib>Borowska-Fielding, Joanna</creatorcontrib><creatorcontrib>Kwok, Charlie H. T.</creatorcontrib><creatorcontrib>Eaton, Shane E. A.</creatorcontrib><creatorcontrib>Baker, Glen B.</creatorcontrib><creatorcontrib>Jean-Xavier, Celine</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Trang, Tuan</creatorcontrib><creatorcontrib>Whelan, Patrick J.</creatorcontrib><title>A dynamic role for dopamine receptors in the control of mammalian spinal networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D
1
and D
2
receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D
1
-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D
2
receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D
2
, D
3
, D
4
and α
2
receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D
1
and inhibitory D
2
receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.</description><subject>631/378/2632/1823</subject><subject>631/378/2632/2633</subject><subject>Animals</subject><subject>Corpus Striatum - metabolism</subject><subject>Developmental stages</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>Dopamine D3 receptors</subject><subject>Dopamine D4 receptors</subject><subject>Excitability</subject><subject>Humanities and Social Sciences</subject><subject>Male</subject><subject>Mammals</subject><subject>Mammals - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Motor neurons</subject><subject>multidisciplinary</subject><subject>Neonates</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neuromodulation</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Receptors, Dopamine - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LxDAQhoMoKrp_wIMEvHipTr626UUQ8QsEEfQc0jTRapvUpOvivze6un4czGVC5pk3M_MitEPggACTh4kTUckCKBQlowyK-QrapMBFQRmlqz_uG2iS0iPkI2jFSbWONhgDqDinm-jmGDevXvetwTF0FrsQcROG_OAtjtbYYQwx4dbj8cFiE_yYMRwc7nXf667VHqeh9brD3o7zEJ_SNlpzukt28hm30N3Z6e3JRXF1fX55cnxVGF7ysXB1zWEqS0JZpWVVE1JXlBHQohGuJlMpG2E4aTiUrKkbasvSgpNGCwO1A8e20NFCd5jVvW2Mza3pTg2x7XV8VUG36nfGtw_qPryoUuSlEJkF9j8FYnie2TSqvk3Gdp32NsySopxLTohg04zu_UEfwyzmqT-oigteSsgUXVAmhpSidctmCKh309TCNJVNUx-mqXku2v05xrLky6IMsAWQcsrf2_j99z-yb9uVo1c</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Sharples, Simon A.</creator><creator>Burma, Nicole E.</creator><creator>Borowska-Fielding, Joanna</creator><creator>Kwok, Charlie H. T.</creator><creator>Eaton, Shane E. A.</creator><creator>Baker, Glen B.</creator><creator>Jean-Xavier, Celine</creator><creator>Zhang, Ying</creator><creator>Trang, Tuan</creator><creator>Whelan, Patrick J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1234-5415</orcidid></search><sort><creationdate>20201002</creationdate><title>A dynamic role for dopamine receptors in the control of mammalian spinal networks</title><author>Sharples, Simon A. ; Burma, Nicole E. ; Borowska-Fielding, Joanna ; Kwok, Charlie H. T. ; Eaton, Shane E. A. ; Baker, Glen B. ; Jean-Xavier, Celine ; Zhang, Ying ; Trang, Tuan ; Whelan, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fbb406871239a89b11b92310a5d5fb1688d5c41d4073dbd2e77e0f8ca5c0bf0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/2632/1823</topic><topic>631/378/2632/2633</topic><topic>Animals</topic><topic>Corpus Striatum - metabolism</topic><topic>Developmental stages</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>Dopamine D3 receptors</topic><topic>Dopamine D4 receptors</topic><topic>Excitability</topic><topic>Humanities and Social Sciences</topic><topic>Male</topic><topic>Mammals</topic><topic>Mammals - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Motor neurons</topic><topic>multidisciplinary</topic><topic>Neonates</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neuromodulation</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Receptors, Dopamine - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharples, Simon A.</creatorcontrib><creatorcontrib>Burma, Nicole E.</creatorcontrib><creatorcontrib>Borowska-Fielding, Joanna</creatorcontrib><creatorcontrib>Kwok, Charlie H. T.</creatorcontrib><creatorcontrib>Eaton, Shane E. A.</creatorcontrib><creatorcontrib>Baker, Glen B.</creatorcontrib><creatorcontrib>Jean-Xavier, Celine</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Trang, Tuan</creatorcontrib><creatorcontrib>Whelan, Patrick J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharples, Simon A.</au><au>Burma, Nicole E.</au><au>Borowska-Fielding, Joanna</au><au>Kwok, Charlie H. T.</au><au>Eaton, Shane E. A.</au><au>Baker, Glen B.</au><au>Jean-Xavier, Celine</au><au>Zhang, Ying</au><au>Trang, Tuan</au><au>Whelan, Patrick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic role for dopamine receptors in the control of mammalian spinal networks</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-02</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>16429</spage><epage>16429</epage><pages>16429-16429</pages><artnum>16429</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D
1
and D
2
receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D
1
-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D
2
receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D
2
, D
3
, D
4
and α
2
receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D
1
and inhibitory D
2
receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33009442</pmid><doi>10.1038/s41598-020-73230-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1234-5415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-10, Vol.10 (1), p.16429-16429, Article 16429 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7532218 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/378/2632/1823 631/378/2632/2633 Animals Corpus Striatum - metabolism Developmental stages Dopamine Dopamine - metabolism Dopamine D1 receptors Dopamine D2 receptors Dopamine D3 receptors Dopamine D4 receptors Excitability Humanities and Social Sciences Male Mammals Mammals - metabolism Mice Mice, Inbred C57BL Motor neurons multidisciplinary Neonates Neostriatum Neural networks Neuromodulation Neurotransmitter Agents - metabolism Receptors, Dopamine - metabolism Science Science (multidisciplinary) Spinal cord Spinal Cord - metabolism |
title | A dynamic role for dopamine receptors in the control of mammalian spinal networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20role%20for%20dopamine%20receptors%20in%20the%20control%20of%20mammalian%20spinal%20networks&rft.jtitle=Scientific%20reports&rft.au=Sharples,%20Simon%20A.&rft.date=2020-10-02&rft.volume=10&rft.issue=1&rft.spage=16429&rft.epage=16429&rft.pages=16429-16429&rft.artnum=16429&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-73230-w&rft_dat=%3Cproquest_pubme%3E2449454780%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449454780&rft_id=info:pmid/33009442&rfr_iscdi=true |