Modelling the effects of CO2 on C3 and C4 grass competition during the mid-Pleistocene transition in South Africa

Palaeoenvironmental reconstructions of the interior of South Africa show a wetter environment than today and a non-analogous vegetation structure in the Early Pleistocene. This includes the presence of grasses following both C 3 and C 4 photosynthetic pathways, whereas C 3 grasses decline after the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-10, Vol.10 (1), p.16234-16234, Article 16234
Hauptverfasser: Ecker, Michaela, Kelley, Douglas, Sato, Hiromitsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16234
container_issue 1
container_start_page 16234
container_title Scientific reports
container_volume 10
creator Ecker, Michaela
Kelley, Douglas
Sato, Hiromitsu
description Palaeoenvironmental reconstructions of the interior of South Africa show a wetter environment than today and a non-analogous vegetation structure in the Early Pleistocene. This includes the presence of grasses following both C 3 and C 4 photosynthetic pathways, whereas C 3 grasses decline after the mid-Pleistocene transition (MPT, c. 1.2–0.8 Ma). However, the local terrestrial proxy record cannot distinguish between the potential drivers of these vegetation changes. In this study we show that low glacial CO 2 levels, similar to those at the MPT, lead to the local decline of C 3 grasses under conditions of decreased water availability, using a vegetation model (LPX) driven by Atmosphere–Ocean coupled General Climate Model climate reconstructions. We modelled vegetation for glacial climates under different levels of CO 2 and fire regimes and find evidence that a combination of low CO 2 and changed seasonality is driving the changes in grass cover, whereas fire has little influence on the ratio of C 3 :C 4 grasses. Our results suggest the prevalence of a less vegetated landscape with limited, seasonal water availability, which could potentially explain the much sparser mid-Pleistocene archaeological record in the southern Kalahari.
doi_str_mv 10.1038/s41598-020-72614-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7530989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449452302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-d23783cfc77e6d901dad0789ebed0ddb2e587672f30ae2e9483ce327ab3b60233</originalsourceid><addsrcrecordid>eNp9kUtr3TAQhU1paUKaP9CVoJtu3I5H8rW8KQTTF6SkkGQtZGl8r4It3Uh2of--cp30tag2I5jvHGbmFMXLCt5UwOXbJKq6lSUglA3uKlHik-IUQdQlcsSnf_xPivOU7iC_GltRtc-LE84BhOTVaXH_JVgaR-f3bD4Qo2EgMycWBtZdIQuedZxpb1kn2D7qlJgJ05FmN7vcs0t8FE7Oll9HcmkOhjyxOWqfNsp5dh2W-cAuhuiMflE8G_SY6PyhnhW3H97fdJ_Ky6uPn7uLy9LUIObSIm8kN4NpGtrZFiqrLTSypZ4sWNsj1bLZNThw0ITU5nUMcWx0z_sdIOdnxbvN97j0E9k8VZ5pVMfoJh2_q6Cd-rvj3UHtwzfV1Bxa2WaD1w8GMdwvlGY1uWTysbSnsCSFQkgBHCRm9NU_6F1Yos_rrVQrauSwUrhRJoaUIg2_hqlAraGqLVSVQ1U_Q1WriG-idFyPTfG39X9UPwBN-aMl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449452302</pqid></control><display><type>article</type><title>Modelling the effects of CO2 on C3 and C4 grass competition during the mid-Pleistocene transition in South Africa</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ecker, Michaela ; Kelley, Douglas ; Sato, Hiromitsu</creator><creatorcontrib>Ecker, Michaela ; Kelley, Douglas ; Sato, Hiromitsu</creatorcontrib><description>Palaeoenvironmental reconstructions of the interior of South Africa show a wetter environment than today and a non-analogous vegetation structure in the Early Pleistocene. This includes the presence of grasses following both C 3 and C 4 photosynthetic pathways, whereas C 3 grasses decline after the mid-Pleistocene transition (MPT, c. 1.2–0.8 Ma). However, the local terrestrial proxy record cannot distinguish between the potential drivers of these vegetation changes. In this study we show that low glacial CO 2 levels, similar to those at the MPT, lead to the local decline of C 3 grasses under conditions of decreased water availability, using a vegetation model (LPX) driven by Atmosphere–Ocean coupled General Climate Model climate reconstructions. We modelled vegetation for glacial climates under different levels of CO 2 and fire regimes and find evidence that a combination of low CO 2 and changed seasonality is driving the changes in grass cover, whereas fire has little influence on the ratio of C 3 :C 4 grasses. Our results suggest the prevalence of a less vegetated landscape with limited, seasonal water availability, which could potentially explain the much sparser mid-Pleistocene archaeological record in the southern Kalahari.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72614-2</identifier><identifier>PMID: 33004831</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2462 ; 704/172 ; Carbon dioxide ; Climate models ; Grasses ; Humanities and Social Sciences ; multidisciplinary ; Pleistocene ; Science ; Science (multidisciplinary) ; Seasonal variations ; Vegetation ; Vegetation changes ; Water availability</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.16234-16234, Article 16234</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-d23783cfc77e6d901dad0789ebed0ddb2e587672f30ae2e9483ce327ab3b60233</citedby><cites>FETCH-LOGICAL-c504t-d23783cfc77e6d901dad0789ebed0ddb2e587672f30ae2e9483ce327ab3b60233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530989/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530989/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids></links><search><creatorcontrib>Ecker, Michaela</creatorcontrib><creatorcontrib>Kelley, Douglas</creatorcontrib><creatorcontrib>Sato, Hiromitsu</creatorcontrib><title>Modelling the effects of CO2 on C3 and C4 grass competition during the mid-Pleistocene transition in South Africa</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Palaeoenvironmental reconstructions of the interior of South Africa show a wetter environment than today and a non-analogous vegetation structure in the Early Pleistocene. This includes the presence of grasses following both C 3 and C 4 photosynthetic pathways, whereas C 3 grasses decline after the mid-Pleistocene transition (MPT, c. 1.2–0.8 Ma). However, the local terrestrial proxy record cannot distinguish between the potential drivers of these vegetation changes. In this study we show that low glacial CO 2 levels, similar to those at the MPT, lead to the local decline of C 3 grasses under conditions of decreased water availability, using a vegetation model (LPX) driven by Atmosphere–Ocean coupled General Climate Model climate reconstructions. We modelled vegetation for glacial climates under different levels of CO 2 and fire regimes and find evidence that a combination of low CO 2 and changed seasonality is driving the changes in grass cover, whereas fire has little influence on the ratio of C 3 :C 4 grasses. Our results suggest the prevalence of a less vegetated landscape with limited, seasonal water availability, which could potentially explain the much sparser mid-Pleistocene archaeological record in the southern Kalahari.</description><subject>631/158/2462</subject><subject>704/172</subject><subject>Carbon dioxide</subject><subject>Climate models</subject><subject>Grasses</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Pleistocene</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seasonal variations</subject><subject>Vegetation</subject><subject>Vegetation changes</subject><subject>Water availability</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtr3TAQhU1paUKaP9CVoJtu3I5H8rW8KQTTF6SkkGQtZGl8r4It3Uh2of--cp30tag2I5jvHGbmFMXLCt5UwOXbJKq6lSUglA3uKlHik-IUQdQlcsSnf_xPivOU7iC_GltRtc-LE84BhOTVaXH_JVgaR-f3bD4Qo2EgMycWBtZdIQuedZxpb1kn2D7qlJgJ05FmN7vcs0t8FE7Oll9HcmkOhjyxOWqfNsp5dh2W-cAuhuiMflE8G_SY6PyhnhW3H97fdJ_Ky6uPn7uLy9LUIObSIm8kN4NpGtrZFiqrLTSypZ4sWNsj1bLZNThw0ITU5nUMcWx0z_sdIOdnxbvN97j0E9k8VZ5pVMfoJh2_q6Cd-rvj3UHtwzfV1Bxa2WaD1w8GMdwvlGY1uWTysbSnsCSFQkgBHCRm9NU_6F1Yos_rrVQrauSwUrhRJoaUIg2_hqlAraGqLVSVQ1U_Q1WriG-idFyPTfG39X9UPwBN-aMl</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ecker, Michaela</creator><creator>Kelley, Douglas</creator><creator>Sato, Hiromitsu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201001</creationdate><title>Modelling the effects of CO2 on C3 and C4 grass competition during the mid-Pleistocene transition in South Africa</title><author>Ecker, Michaela ; Kelley, Douglas ; Sato, Hiromitsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-d23783cfc77e6d901dad0789ebed0ddb2e587672f30ae2e9483ce327ab3b60233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/158/2462</topic><topic>704/172</topic><topic>Carbon dioxide</topic><topic>Climate models</topic><topic>Grasses</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Pleistocene</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seasonal variations</topic><topic>Vegetation</topic><topic>Vegetation changes</topic><topic>Water availability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ecker, Michaela</creatorcontrib><creatorcontrib>Kelley, Douglas</creatorcontrib><creatorcontrib>Sato, Hiromitsu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ecker, Michaela</au><au>Kelley, Douglas</au><au>Sato, Hiromitsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the effects of CO2 on C3 and C4 grass competition during the mid-Pleistocene transition in South Africa</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>16234</spage><epage>16234</epage><pages>16234-16234</pages><artnum>16234</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Palaeoenvironmental reconstructions of the interior of South Africa show a wetter environment than today and a non-analogous vegetation structure in the Early Pleistocene. This includes the presence of grasses following both C 3 and C 4 photosynthetic pathways, whereas C 3 grasses decline after the mid-Pleistocene transition (MPT, c. 1.2–0.8 Ma). However, the local terrestrial proxy record cannot distinguish between the potential drivers of these vegetation changes. In this study we show that low glacial CO 2 levels, similar to those at the MPT, lead to the local decline of C 3 grasses under conditions of decreased water availability, using a vegetation model (LPX) driven by Atmosphere–Ocean coupled General Climate Model climate reconstructions. We modelled vegetation for glacial climates under different levels of CO 2 and fire regimes and find evidence that a combination of low CO 2 and changed seasonality is driving the changes in grass cover, whereas fire has little influence on the ratio of C 3 :C 4 grasses. Our results suggest the prevalence of a less vegetated landscape with limited, seasonal water availability, which could potentially explain the much sparser mid-Pleistocene archaeological record in the southern Kalahari.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33004831</pmid><doi>10.1038/s41598-020-72614-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-10, Vol.10 (1), p.16234-16234, Article 16234
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7530989
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/158/2462
704/172
Carbon dioxide
Climate models
Grasses
Humanities and Social Sciences
multidisciplinary
Pleistocene
Science
Science (multidisciplinary)
Seasonal variations
Vegetation
Vegetation changes
Water availability
title Modelling the effects of CO2 on C3 and C4 grass competition during the mid-Pleistocene transition in South Africa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20effects%20of%20CO2%20on%20C3%20and%20C4%20grass%20competition%20during%20the%20mid-Pleistocene%20transition%20in%20South%20Africa&rft.jtitle=Scientific%20reports&rft.au=Ecker,%20Michaela&rft.date=2020-10-01&rft.volume=10&rft.issue=1&rft.spage=16234&rft.epage=16234&rft.pages=16234-16234&rft.artnum=16234&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72614-2&rft_dat=%3Cproquest_pubme%3E2449452302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449452302&rft_id=info:pmid/33004831&rfr_iscdi=true