Progesterone increases blood glucose via hepatic progesterone receptor membrane component 1 under limited or impaired action of insulin

Hepatic gluconeogenesis is the main pathway for blood glucose maintenance activated during fasting. Retardation of insulin action, such as in diabetes mellitus, activates gluconeogenesis during the fed state. While the role of progesterone (P4) in diabetes is controversial, the P4 receptor, progeste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-10, Vol.10 (1), p.16316-16316, Article 16316
Hauptverfasser: Lee, Sang R., Choi, Woo-Young, Heo, Jun H., Huh, Jiyoung, Kim, Globinna, Lee, Kyu-Pil, Kwun, Hyo-Jung, Shin, Hyun-Jin, Baek, In-Jeoung, Hong, Eui-Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16316
container_issue 1
container_start_page 16316
container_title Scientific reports
container_volume 10
creator Lee, Sang R.
Choi, Woo-Young
Heo, Jun H.
Huh, Jiyoung
Kim, Globinna
Lee, Kyu-Pil
Kwun, Hyo-Jung
Shin, Hyun-Jin
Baek, In-Jeoung
Hong, Eui-Ju
description Hepatic gluconeogenesis is the main pathway for blood glucose maintenance activated during fasting. Retardation of insulin action, such as in diabetes mellitus, activates gluconeogenesis during the fed state. While the role of progesterone (P4) in diabetes is controversial, the P4 receptor, progesterone receptor membrane component 1 (PGRMC1), is known to stimulate pancreatic insulin secretion. We investigated the role of P4, via hepatic PGRMC1, during gluconeogenesis. The PGRMC1 binding chemical, AG-205, induced PGRMC1 monomer (25 kDa) abundance, and increased PEPCK expression and glucose production in parallel with cyclic AMP (cAMP) induction in Hep3B cells. PGRMC1-mediated cyclic AMP was inhibited by an adenylate cyclase inhibitor (MDL-12,330A). PEPCK suppression in Pgrmc1 KO hepatocyte was not observed after treatment of MDL-12,330A. PGRMC1 knockdown or overexpression systems in Hep3B cells confirmed that PGRMC1 mediates PEPCK expression via phosphorylation of cAMP-response element binding protein (CREB). CREB phosphorylation and PEPCK expression in primary hepatocytes were greater than that in PGRMC1 knock-out hepatocytes. Progesterone increased PGRMC1 expression, which induced cAMP and PEPCK induction and glucose production. In vivo, P4 suppressed gluconeogenesis following plasma insulin induction under normal conditions in a mouse model. However, P4 increased blood glucose via gluconeogenesis in parallel with increases in PGRMC1 and PEPCK expression in mice in both insulin-deficient and insulin-resistant conditions. We conclude that P4 increases hepatic glucose production via PGRMC1, which may exacerbate hyperglycaemia in diabetes where insulin action is limited.
doi_str_mv 10.1038/s41598-020-73330-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7529793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448402354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-fc18d66014b14bb1f060d12fc295b33e50926c0d5e904d787a6b45e7818480dd3</originalsourceid><addsrcrecordid>eNp9kc9qFTEUxoMotlz7Ai4k4MbN1PydyWwEKWqFgi50HTLJmduUmWRMZgo-ga_tqbfWqwtDSELO73wnJx8hzzk750ya11Vx3ZuGCdZ0UkpcH5FTwZRuhBTi8dH5hJzVesNwaNEr3j8lJ8gzzZg6JT8-l7yHukLJCWhMvoCrUOkw5Rzoftp8rkBvo6PXsLg1erocJxTwsKy50BnmoTi88XleMJJWyumWAhQ6xTmuEChScV5cLHh2fo050TxiybpNMT0jT0Y3VTi733fk6_t3Xy4um6tPHz5evL1qvOrU2oyem9C2jKsB58BH1rLAxehFrwcpQbNetJ4FDT1ToTOdaweloTPcKMNCkDvy5qC7bMMMweNDi5vsUuLsynebXbR_R1K8tvt8azv8vK6XKPDqXqDkbxt-hJ1j9TBN2HzeqhVKGcWE1ArRl_-gN3krCdu7o3qluRE9UuJA-ZJrLTA-PIYze2e1PVht0Wr7y2pcd-TFcRsPKb-NRUAegIqhtIfyp_Z_ZH8CwMy2-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449451829</pqid></control><display><type>article</type><title>Progesterone increases blood glucose via hepatic progesterone receptor membrane component 1 under limited or impaired action of insulin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Sang R. ; Choi, Woo-Young ; Heo, Jun H. ; Huh, Jiyoung ; Kim, Globinna ; Lee, Kyu-Pil ; Kwun, Hyo-Jung ; Shin, Hyun-Jin ; Baek, In-Jeoung ; Hong, Eui-Ju</creator><creatorcontrib>Lee, Sang R. ; Choi, Woo-Young ; Heo, Jun H. ; Huh, Jiyoung ; Kim, Globinna ; Lee, Kyu-Pil ; Kwun, Hyo-Jung ; Shin, Hyun-Jin ; Baek, In-Jeoung ; Hong, Eui-Ju</creatorcontrib><description>Hepatic gluconeogenesis is the main pathway for blood glucose maintenance activated during fasting. Retardation of insulin action, such as in diabetes mellitus, activates gluconeogenesis during the fed state. While the role of progesterone (P4) in diabetes is controversial, the P4 receptor, progesterone receptor membrane component 1 (PGRMC1), is known to stimulate pancreatic insulin secretion. We investigated the role of P4, via hepatic PGRMC1, during gluconeogenesis. The PGRMC1 binding chemical, AG-205, induced PGRMC1 monomer (25 kDa) abundance, and increased PEPCK expression and glucose production in parallel with cyclic AMP (cAMP) induction in Hep3B cells. PGRMC1-mediated cyclic AMP was inhibited by an adenylate cyclase inhibitor (MDL-12,330A). PEPCK suppression in Pgrmc1 KO hepatocyte was not observed after treatment of MDL-12,330A. PGRMC1 knockdown or overexpression systems in Hep3B cells confirmed that PGRMC1 mediates PEPCK expression via phosphorylation of cAMP-response element binding protein (CREB). CREB phosphorylation and PEPCK expression in primary hepatocytes were greater than that in PGRMC1 knock-out hepatocytes. Progesterone increased PGRMC1 expression, which induced cAMP and PEPCK induction and glucose production. In vivo, P4 suppressed gluconeogenesis following plasma insulin induction under normal conditions in a mouse model. However, P4 increased blood glucose via gluconeogenesis in parallel with increases in PGRMC1 and PEPCK expression in mice in both insulin-deficient and insulin-resistant conditions. We conclude that P4 increases hepatic glucose production via PGRMC1, which may exacerbate hyperglycaemia in diabetes where insulin action is limited.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-73330-7</identifier><identifier>PMID: 33005004</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/163 ; 692/4020 ; Adenylate cyclase ; Adenylyl Cyclases - metabolism ; AMP ; Animals ; Blood ; Blood glucose ; Blood Glucose - metabolism ; Blotting, Western ; Cell Line ; Cyclic AMP - metabolism ; Cyclic AMP response element-binding protein ; Diabetes ; Diabetes mellitus ; Gluconeogenesis ; Glucose ; Hepatocytes ; Hepatocytes - metabolism ; Humanities and Social Sciences ; Humans ; Hyperglycemia ; Insulin ; Insulin - metabolism ; Insulin secretion ; Liver ; Membrane Proteins - metabolism ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondrial Proteins ; multidisciplinary ; Pancreas ; Phosphoenolpyruvate Carboxykinase (ATP) - metabolism ; Phosphorylation ; Progesterone ; Progesterone - metabolism ; Progesterone - physiology ; Real-Time Polymerase Chain Reaction ; Receptors, Progesterone - metabolism ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.16316-16316, Article 16316</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-fc18d66014b14bb1f060d12fc295b33e50926c0d5e904d787a6b45e7818480dd3</citedby><cites>FETCH-LOGICAL-c474t-fc18d66014b14bb1f060d12fc295b33e50926c0d5e904d787a6b45e7818480dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33005004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sang R.</creatorcontrib><creatorcontrib>Choi, Woo-Young</creatorcontrib><creatorcontrib>Heo, Jun H.</creatorcontrib><creatorcontrib>Huh, Jiyoung</creatorcontrib><creatorcontrib>Kim, Globinna</creatorcontrib><creatorcontrib>Lee, Kyu-Pil</creatorcontrib><creatorcontrib>Kwun, Hyo-Jung</creatorcontrib><creatorcontrib>Shin, Hyun-Jin</creatorcontrib><creatorcontrib>Baek, In-Jeoung</creatorcontrib><creatorcontrib>Hong, Eui-Ju</creatorcontrib><title>Progesterone increases blood glucose via hepatic progesterone receptor membrane component 1 under limited or impaired action of insulin</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Hepatic gluconeogenesis is the main pathway for blood glucose maintenance activated during fasting. Retardation of insulin action, such as in diabetes mellitus, activates gluconeogenesis during the fed state. While the role of progesterone (P4) in diabetes is controversial, the P4 receptor, progesterone receptor membrane component 1 (PGRMC1), is known to stimulate pancreatic insulin secretion. We investigated the role of P4, via hepatic PGRMC1, during gluconeogenesis. The PGRMC1 binding chemical, AG-205, induced PGRMC1 monomer (25 kDa) abundance, and increased PEPCK expression and glucose production in parallel with cyclic AMP (cAMP) induction in Hep3B cells. PGRMC1-mediated cyclic AMP was inhibited by an adenylate cyclase inhibitor (MDL-12,330A). PEPCK suppression in Pgrmc1 KO hepatocyte was not observed after treatment of MDL-12,330A. PGRMC1 knockdown or overexpression systems in Hep3B cells confirmed that PGRMC1 mediates PEPCK expression via phosphorylation of cAMP-response element binding protein (CREB). CREB phosphorylation and PEPCK expression in primary hepatocytes were greater than that in PGRMC1 knock-out hepatocytes. Progesterone increased PGRMC1 expression, which induced cAMP and PEPCK induction and glucose production. In vivo, P4 suppressed gluconeogenesis following plasma insulin induction under normal conditions in a mouse model. However, P4 increased blood glucose via gluconeogenesis in parallel with increases in PGRMC1 and PEPCK expression in mice in both insulin-deficient and insulin-resistant conditions. We conclude that P4 increases hepatic glucose production via PGRMC1, which may exacerbate hyperglycaemia in diabetes where insulin action is limited.</description><subject>692/163</subject><subject>692/4020</subject><subject>Adenylate cyclase</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>AMP</subject><subject>Animals</subject><subject>Blood</subject><subject>Blood glucose</subject><subject>Blood Glucose - metabolism</subject><subject>Blotting, Western</subject><subject>Cell Line</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Gluconeogenesis</subject><subject>Glucose</subject><subject>Hepatocytes</subject><subject>Hepatocytes - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin secretion</subject><subject>Liver</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondrial Proteins</subject><subject>multidisciplinary</subject><subject>Pancreas</subject><subject>Phosphoenolpyruvate Carboxykinase (ATP) - metabolism</subject><subject>Phosphorylation</subject><subject>Progesterone</subject><subject>Progesterone - metabolism</subject><subject>Progesterone - physiology</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Receptors, Progesterone - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9qFTEUxoMotlz7Ai4k4MbN1PydyWwEKWqFgi50HTLJmduUmWRMZgo-ga_tqbfWqwtDSELO73wnJx8hzzk750ya11Vx3ZuGCdZ0UkpcH5FTwZRuhBTi8dH5hJzVesNwaNEr3j8lJ8gzzZg6JT8-l7yHukLJCWhMvoCrUOkw5Rzoftp8rkBvo6PXsLg1erocJxTwsKy50BnmoTi88XleMJJWyumWAhQ6xTmuEChScV5cLHh2fo050TxiybpNMT0jT0Y3VTi733fk6_t3Xy4um6tPHz5evL1qvOrU2oyem9C2jKsB58BH1rLAxehFrwcpQbNetJ4FDT1ToTOdaweloTPcKMNCkDvy5qC7bMMMweNDi5vsUuLsynebXbR_R1K8tvt8azv8vK6XKPDqXqDkbxt-hJ1j9TBN2HzeqhVKGcWE1ArRl_-gN3krCdu7o3qluRE9UuJA-ZJrLTA-PIYze2e1PVht0Wr7y2pcd-TFcRsPKb-NRUAegIqhtIfyp_Z_ZH8CwMy2-w</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lee, Sang R.</creator><creator>Choi, Woo-Young</creator><creator>Heo, Jun H.</creator><creator>Huh, Jiyoung</creator><creator>Kim, Globinna</creator><creator>Lee, Kyu-Pil</creator><creator>Kwun, Hyo-Jung</creator><creator>Shin, Hyun-Jin</creator><creator>Baek, In-Jeoung</creator><creator>Hong, Eui-Ju</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201001</creationdate><title>Progesterone increases blood glucose via hepatic progesterone receptor membrane component 1 under limited or impaired action of insulin</title><author>Lee, Sang R. ; Choi, Woo-Young ; Heo, Jun H. ; Huh, Jiyoung ; Kim, Globinna ; Lee, Kyu-Pil ; Kwun, Hyo-Jung ; Shin, Hyun-Jin ; Baek, In-Jeoung ; Hong, Eui-Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-fc18d66014b14bb1f060d12fc295b33e50926c0d5e904d787a6b45e7818480dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/163</topic><topic>692/4020</topic><topic>Adenylate cyclase</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>AMP</topic><topic>Animals</topic><topic>Blood</topic><topic>Blood glucose</topic><topic>Blood Glucose - metabolism</topic><topic>Blotting, Western</topic><topic>Cell Line</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Gluconeogenesis</topic><topic>Glucose</topic><topic>Hepatocytes</topic><topic>Hepatocytes - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin secretion</topic><topic>Liver</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondrial Proteins</topic><topic>multidisciplinary</topic><topic>Pancreas</topic><topic>Phosphoenolpyruvate Carboxykinase (ATP) - metabolism</topic><topic>Phosphorylation</topic><topic>Progesterone</topic><topic>Progesterone - metabolism</topic><topic>Progesterone - physiology</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Receptors, Progesterone - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang R.</creatorcontrib><creatorcontrib>Choi, Woo-Young</creatorcontrib><creatorcontrib>Heo, Jun H.</creatorcontrib><creatorcontrib>Huh, Jiyoung</creatorcontrib><creatorcontrib>Kim, Globinna</creatorcontrib><creatorcontrib>Lee, Kyu-Pil</creatorcontrib><creatorcontrib>Kwun, Hyo-Jung</creatorcontrib><creatorcontrib>Shin, Hyun-Jin</creatorcontrib><creatorcontrib>Baek, In-Jeoung</creatorcontrib><creatorcontrib>Hong, Eui-Ju</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang R.</au><au>Choi, Woo-Young</au><au>Heo, Jun H.</au><au>Huh, Jiyoung</au><au>Kim, Globinna</au><au>Lee, Kyu-Pil</au><au>Kwun, Hyo-Jung</au><au>Shin, Hyun-Jin</au><au>Baek, In-Jeoung</au><au>Hong, Eui-Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progesterone increases blood glucose via hepatic progesterone receptor membrane component 1 under limited or impaired action of insulin</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>16316</spage><epage>16316</epage><pages>16316-16316</pages><artnum>16316</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Hepatic gluconeogenesis is the main pathway for blood glucose maintenance activated during fasting. Retardation of insulin action, such as in diabetes mellitus, activates gluconeogenesis during the fed state. While the role of progesterone (P4) in diabetes is controversial, the P4 receptor, progesterone receptor membrane component 1 (PGRMC1), is known to stimulate pancreatic insulin secretion. We investigated the role of P4, via hepatic PGRMC1, during gluconeogenesis. The PGRMC1 binding chemical, AG-205, induced PGRMC1 monomer (25 kDa) abundance, and increased PEPCK expression and glucose production in parallel with cyclic AMP (cAMP) induction in Hep3B cells. PGRMC1-mediated cyclic AMP was inhibited by an adenylate cyclase inhibitor (MDL-12,330A). PEPCK suppression in Pgrmc1 KO hepatocyte was not observed after treatment of MDL-12,330A. PGRMC1 knockdown or overexpression systems in Hep3B cells confirmed that PGRMC1 mediates PEPCK expression via phosphorylation of cAMP-response element binding protein (CREB). CREB phosphorylation and PEPCK expression in primary hepatocytes were greater than that in PGRMC1 knock-out hepatocytes. Progesterone increased PGRMC1 expression, which induced cAMP and PEPCK induction and glucose production. In vivo, P4 suppressed gluconeogenesis following plasma insulin induction under normal conditions in a mouse model. However, P4 increased blood glucose via gluconeogenesis in parallel with increases in PGRMC1 and PEPCK expression in mice in both insulin-deficient and insulin-resistant conditions. We conclude that P4 increases hepatic glucose production via PGRMC1, which may exacerbate hyperglycaemia in diabetes where insulin action is limited.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33005004</pmid><doi>10.1038/s41598-020-73330-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-10, Vol.10 (1), p.16316-16316, Article 16316
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7529793
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 692/163
692/4020
Adenylate cyclase
Adenylyl Cyclases - metabolism
AMP
Animals
Blood
Blood glucose
Blood Glucose - metabolism
Blotting, Western
Cell Line
Cyclic AMP - metabolism
Cyclic AMP response element-binding protein
Diabetes
Diabetes mellitus
Gluconeogenesis
Glucose
Hepatocytes
Hepatocytes - metabolism
Humanities and Social Sciences
Humans
Hyperglycemia
Insulin
Insulin - metabolism
Insulin secretion
Liver
Membrane Proteins - metabolism
Mice, Inbred C57BL
Mice, Knockout
Mitochondrial Proteins
multidisciplinary
Pancreas
Phosphoenolpyruvate Carboxykinase (ATP) - metabolism
Phosphorylation
Progesterone
Progesterone - metabolism
Progesterone - physiology
Real-Time Polymerase Chain Reaction
Receptors, Progesterone - metabolism
Science
Science (multidisciplinary)
title Progesterone increases blood glucose via hepatic progesterone receptor membrane component 1 under limited or impaired action of insulin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progesterone%20increases%20blood%20glucose%20via%20hepatic%20progesterone%20receptor%20membrane%20component%201%20under%20limited%20or%20impaired%20action%20of%20insulin&rft.jtitle=Scientific%20reports&rft.au=Lee,%20Sang%20R.&rft.date=2020-10-01&rft.volume=10&rft.issue=1&rft.spage=16316&rft.epage=16316&rft.pages=16316-16316&rft.artnum=16316&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-73330-7&rft_dat=%3Cproquest_pubme%3E2448402354%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449451829&rft_id=info:pmid/33005004&rfr_iscdi=true