Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling

Background Wisteria floribunda agglutinin (WFA) + Mac-2-binding protein (M2BPGi) is a novel serum marker for liver fibrosis. Although an elevated serum level of M2BPGi can predict development of hepatocellular carcinoma (HCC), the effect of M2BPGi on HCC remains unclear. There are no reports about t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of cancer 2020-09, Vol.123 (7), p.1145-1153
Hauptverfasser: Dolgormaa, Gantumur, Harimoto, Norifumi, Ishii, Norihiro, Yamanaka, Takahiro, Hagiwara, Kei, Tsukagoshi, Mariko, Igarashi, Takamichi, Watanabe, Akira, Kubo, Norio, Araki, Kenichiro, Handa, Tadashi, Yokobori, Takehiko, Oyama, Tetsunari, Kuwano, Hiroyuki, Shirabe, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1153
container_issue 7
container_start_page 1145
container_title British journal of cancer
container_volume 123
creator Dolgormaa, Gantumur
Harimoto, Norifumi
Ishii, Norihiro
Yamanaka, Takahiro
Hagiwara, Kei
Tsukagoshi, Mariko
Igarashi, Takamichi
Watanabe, Akira
Kubo, Norio
Araki, Kenichiro
Handa, Tadashi
Yokobori, Takehiko
Oyama, Tetsunari
Kuwano, Hiroyuki
Shirabe, Ken
description Background Wisteria floribunda agglutinin (WFA) + Mac-2-binding protein (M2BPGi) is a novel serum marker for liver fibrosis. Although an elevated serum level of M2BPGi can predict development of hepatocellular carcinoma (HCC), the effect of M2BPGi on HCC remains unclear. There are no reports about the association of M2BPGi with HCC aggressiveness. We aimed to clarify the significance of M2BPGi in HCC. Methods The protein expression of M2BPGi and galectin-3, a ligand of M2BP, and the mRNA expression of M2BP were evaluated in surgically resected human HCC samples. M2BPGi-regulating signals in HCC cells were investigated using transcriptome analysis. The effects of M2BPGi on HCC properties and galectin-3/mTOR signaling were evaluated. Results M2BPGi and galectin-3 proteins co-localised in HCC cells, while M2BP mRNA was detected in cirrhotic liver stromal cells. mTOR signaling was upregulated in M2BPGi-treated HCC cells. Moreover, M2BPGi treatment induced tumour-promoting effects on HCC in vitro by activated mTOR signaling. In addition, M2BPGi bound to galectin-3 to induce membranous galectin-3 expression in HCC cells. In vivo, M2BPGi enhanced the growth of xenografted HCC. Conclusions M2BPGi is produced in stromal cells of the cirrhotic liver. Furthermore, M2BPGi enhances the progression of HCC through the galectin-3/mTOR pathway.
doi_str_mv 10.1038/s41416-020-0971-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7525442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420624815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-c664e39ccbf7742fbbb67b5ff06dfeabd0f4f7edc5ef0cc630f724dd40d1dfb33</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVJabbb_oBciiCXXtxKsmzZl0II6QekBEp6FpI88irY0layl_jfV2bTpA30omGYZ97RzIvQGSUfKCmbj4lTTuuCMFKQVtBieYE2tCpZQRsmTtCGECJyhZFT9Dqlu5y2pBGv0GnJasYr0W7Q_XdlClZo5zvne7yPYQLncT8sRnnsUhghYvA75Q0kPO0Aq76PkJI7gM8BB4t3sFdTMDAM86AiNioa58OosF6wMpM7qGnVHm9vfuDkeq-GnL5BL60aErx9iFv08_PV7eXX4vrmy7fLi-vC1IxM-a05lK0x2grBmdVa10JX1pK6s6B0Ryy3AjpTgSXG1CWxgvGu46SjndVluUWfjrr7WY-ZAz9FNch9dKOKiwzKyX8r3u1kHw5SVKzinGWB9w8CMfyaIU1ydGldVnkIc5KMM5Kv2eTDb9H5M_QuzDHvu1KCt42oGc0UPVImhpQi2MfPUCJXX-XRV5l9lauvcsk97_7e4rHjj5EZYEcg5ZLvIT6N_r_qb-oysvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474987621</pqid></control><display><type>article</type><title>Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dolgormaa, Gantumur ; Harimoto, Norifumi ; Ishii, Norihiro ; Yamanaka, Takahiro ; Hagiwara, Kei ; Tsukagoshi, Mariko ; Igarashi, Takamichi ; Watanabe, Akira ; Kubo, Norio ; Araki, Kenichiro ; Handa, Tadashi ; Yokobori, Takehiko ; Oyama, Tetsunari ; Kuwano, Hiroyuki ; Shirabe, Ken</creator><creatorcontrib>Dolgormaa, Gantumur ; Harimoto, Norifumi ; Ishii, Norihiro ; Yamanaka, Takahiro ; Hagiwara, Kei ; Tsukagoshi, Mariko ; Igarashi, Takamichi ; Watanabe, Akira ; Kubo, Norio ; Araki, Kenichiro ; Handa, Tadashi ; Yokobori, Takehiko ; Oyama, Tetsunari ; Kuwano, Hiroyuki ; Shirabe, Ken</creatorcontrib><description>Background Wisteria floribunda agglutinin (WFA) + Mac-2-binding protein (M2BPGi) is a novel serum marker for liver fibrosis. Although an elevated serum level of M2BPGi can predict development of hepatocellular carcinoma (HCC), the effect of M2BPGi on HCC remains unclear. There are no reports about the association of M2BPGi with HCC aggressiveness. We aimed to clarify the significance of M2BPGi in HCC. Methods The protein expression of M2BPGi and galectin-3, a ligand of M2BP, and the mRNA expression of M2BP were evaluated in surgically resected human HCC samples. M2BPGi-regulating signals in HCC cells were investigated using transcriptome analysis. The effects of M2BPGi on HCC properties and galectin-3/mTOR signaling were evaluated. Results M2BPGi and galectin-3 proteins co-localised in HCC cells, while M2BP mRNA was detected in cirrhotic liver stromal cells. mTOR signaling was upregulated in M2BPGi-treated HCC cells. Moreover, M2BPGi treatment induced tumour-promoting effects on HCC in vitro by activated mTOR signaling. In addition, M2BPGi bound to galectin-3 to induce membranous galectin-3 expression in HCC cells. In vivo, M2BPGi enhanced the growth of xenografted HCC. Conclusions M2BPGi is produced in stromal cells of the cirrhotic liver. Furthermore, M2BPGi enhances the progression of HCC through the galectin-3/mTOR pathway.</description><identifier>ISSN: 0007-0920</identifier><identifier>EISSN: 1532-1827</identifier><identifier>DOI: 10.1038/s41416-020-0971-y</identifier><identifier>PMID: 32624579</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/1504/1610/4029 ; 692/4028/67/1504/1610/4029 ; Animals ; Antigens, Neoplasm - analysis ; Antigens, Neoplasm - physiology ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Carcinoma, Hepatocellular - pathology ; Cell Line, Tumor ; Disease Progression ; Drug Resistance ; Epidemiology ; Female ; Fibrosis ; Galectin 3 - analysis ; Galectin 3 - physiology ; Galectin-3 ; Gene expression ; Hepatocellular carcinoma ; Hepatocytes ; Humans ; Liver cancer ; Liver Neoplasms - pathology ; Membrane Glycoproteins - analysis ; Membrane Glycoproteins - physiology ; Mice ; Molecular Medicine ; Oncology ; Proteins ; Signal Transduction - physiology ; Stromal cells ; TOR protein ; TOR Serine-Threonine Kinases - physiology ; Transcriptomes ; Tumors ; Xenografts</subject><ispartof>British journal of cancer, 2020-09, Vol.123 (7), p.1145-1153</ispartof><rights>The Author(s), under exclusive licence to Cancer Research UK 2020</rights><rights>The Author(s), under exclusive licence to Cancer Research UK 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-c664e39ccbf7742fbbb67b5ff06dfeabd0f4f7edc5ef0cc630f724dd40d1dfb33</citedby><cites>FETCH-LOGICAL-c620t-c664e39ccbf7742fbbb67b5ff06dfeabd0f4f7edc5ef0cc630f724dd40d1dfb33</cites><orcidid>0000-0002-8085-2857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525442/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525442/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32624579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolgormaa, Gantumur</creatorcontrib><creatorcontrib>Harimoto, Norifumi</creatorcontrib><creatorcontrib>Ishii, Norihiro</creatorcontrib><creatorcontrib>Yamanaka, Takahiro</creatorcontrib><creatorcontrib>Hagiwara, Kei</creatorcontrib><creatorcontrib>Tsukagoshi, Mariko</creatorcontrib><creatorcontrib>Igarashi, Takamichi</creatorcontrib><creatorcontrib>Watanabe, Akira</creatorcontrib><creatorcontrib>Kubo, Norio</creatorcontrib><creatorcontrib>Araki, Kenichiro</creatorcontrib><creatorcontrib>Handa, Tadashi</creatorcontrib><creatorcontrib>Yokobori, Takehiko</creatorcontrib><creatorcontrib>Oyama, Tetsunari</creatorcontrib><creatorcontrib>Kuwano, Hiroyuki</creatorcontrib><creatorcontrib>Shirabe, Ken</creatorcontrib><title>Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling</title><title>British journal of cancer</title><addtitle>Br J Cancer</addtitle><addtitle>Br J Cancer</addtitle><description>Background Wisteria floribunda agglutinin (WFA) + Mac-2-binding protein (M2BPGi) is a novel serum marker for liver fibrosis. Although an elevated serum level of M2BPGi can predict development of hepatocellular carcinoma (HCC), the effect of M2BPGi on HCC remains unclear. There are no reports about the association of M2BPGi with HCC aggressiveness. We aimed to clarify the significance of M2BPGi in HCC. Methods The protein expression of M2BPGi and galectin-3, a ligand of M2BP, and the mRNA expression of M2BP were evaluated in surgically resected human HCC samples. M2BPGi-regulating signals in HCC cells were investigated using transcriptome analysis. The effects of M2BPGi on HCC properties and galectin-3/mTOR signaling were evaluated. Results M2BPGi and galectin-3 proteins co-localised in HCC cells, while M2BP mRNA was detected in cirrhotic liver stromal cells. mTOR signaling was upregulated in M2BPGi-treated HCC cells. Moreover, M2BPGi treatment induced tumour-promoting effects on HCC in vitro by activated mTOR signaling. In addition, M2BPGi bound to galectin-3 to induce membranous galectin-3 expression in HCC cells. In vivo, M2BPGi enhanced the growth of xenografted HCC. Conclusions M2BPGi is produced in stromal cells of the cirrhotic liver. Furthermore, M2BPGi enhances the progression of HCC through the galectin-3/mTOR pathway.</description><subject>631/67/1504/1610/4029</subject><subject>692/4028/67/1504/1610/4029</subject><subject>Animals</subject><subject>Antigens, Neoplasm - analysis</subject><subject>Antigens, Neoplasm - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cell Line, Tumor</subject><subject>Disease Progression</subject><subject>Drug Resistance</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Fibrosis</subject><subject>Galectin 3 - analysis</subject><subject>Galectin 3 - physiology</subject><subject>Galectin-3</subject><subject>Gene expression</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatocytes</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - pathology</subject><subject>Membrane Glycoproteins - analysis</subject><subject>Membrane Glycoproteins - physiology</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Oncology</subject><subject>Proteins</subject><subject>Signal Transduction - physiology</subject><subject>Stromal cells</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - physiology</subject><subject>Transcriptomes</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>0007-0920</issn><issn>1532-1827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhkVJabbb_oBciiCXXtxKsmzZl0II6QekBEp6FpI88irY0layl_jfV2bTpA30omGYZ97RzIvQGSUfKCmbj4lTTuuCMFKQVtBieYE2tCpZQRsmTtCGECJyhZFT9Dqlu5y2pBGv0GnJasYr0W7Q_XdlClZo5zvne7yPYQLncT8sRnnsUhghYvA75Q0kPO0Aq76PkJI7gM8BB4t3sFdTMDAM86AiNioa58OosF6wMpM7qGnVHm9vfuDkeq-GnL5BL60aErx9iFv08_PV7eXX4vrmy7fLi-vC1IxM-a05lK0x2grBmdVa10JX1pK6s6B0Ryy3AjpTgSXG1CWxgvGu46SjndVluUWfjrr7WY-ZAz9FNch9dKOKiwzKyX8r3u1kHw5SVKzinGWB9w8CMfyaIU1ydGldVnkIc5KMM5Kv2eTDb9H5M_QuzDHvu1KCt42oGc0UPVImhpQi2MfPUCJXX-XRV5l9lauvcsk97_7e4rHjj5EZYEcg5ZLvIT6N_r_qb-oysvE</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Dolgormaa, Gantumur</creator><creator>Harimoto, Norifumi</creator><creator>Ishii, Norihiro</creator><creator>Yamanaka, Takahiro</creator><creator>Hagiwara, Kei</creator><creator>Tsukagoshi, Mariko</creator><creator>Igarashi, Takamichi</creator><creator>Watanabe, Akira</creator><creator>Kubo, Norio</creator><creator>Araki, Kenichiro</creator><creator>Handa, Tadashi</creator><creator>Yokobori, Takehiko</creator><creator>Oyama, Tetsunari</creator><creator>Kuwano, Hiroyuki</creator><creator>Shirabe, Ken</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8085-2857</orcidid></search><sort><creationdate>20200929</creationdate><title>Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling</title><author>Dolgormaa, Gantumur ; Harimoto, Norifumi ; Ishii, Norihiro ; Yamanaka, Takahiro ; Hagiwara, Kei ; Tsukagoshi, Mariko ; Igarashi, Takamichi ; Watanabe, Akira ; Kubo, Norio ; Araki, Kenichiro ; Handa, Tadashi ; Yokobori, Takehiko ; Oyama, Tetsunari ; Kuwano, Hiroyuki ; Shirabe, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-c664e39ccbf7742fbbb67b5ff06dfeabd0f4f7edc5ef0cc630f724dd40d1dfb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/67/1504/1610/4029</topic><topic>692/4028/67/1504/1610/4029</topic><topic>Animals</topic><topic>Antigens, Neoplasm - analysis</topic><topic>Antigens, Neoplasm - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cell Line, Tumor</topic><topic>Disease Progression</topic><topic>Drug Resistance</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Fibrosis</topic><topic>Galectin 3 - analysis</topic><topic>Galectin 3 - physiology</topic><topic>Galectin-3</topic><topic>Gene expression</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatocytes</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - pathology</topic><topic>Membrane Glycoproteins - analysis</topic><topic>Membrane Glycoproteins - physiology</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Oncology</topic><topic>Proteins</topic><topic>Signal Transduction - physiology</topic><topic>Stromal cells</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - physiology</topic><topic>Transcriptomes</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgormaa, Gantumur</creatorcontrib><creatorcontrib>Harimoto, Norifumi</creatorcontrib><creatorcontrib>Ishii, Norihiro</creatorcontrib><creatorcontrib>Yamanaka, Takahiro</creatorcontrib><creatorcontrib>Hagiwara, Kei</creatorcontrib><creatorcontrib>Tsukagoshi, Mariko</creatorcontrib><creatorcontrib>Igarashi, Takamichi</creatorcontrib><creatorcontrib>Watanabe, Akira</creatorcontrib><creatorcontrib>Kubo, Norio</creatorcontrib><creatorcontrib>Araki, Kenichiro</creatorcontrib><creatorcontrib>Handa, Tadashi</creatorcontrib><creatorcontrib>Yokobori, Takehiko</creatorcontrib><creatorcontrib>Oyama, Tetsunari</creatorcontrib><creatorcontrib>Kuwano, Hiroyuki</creatorcontrib><creatorcontrib>Shirabe, Ken</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgormaa, Gantumur</au><au>Harimoto, Norifumi</au><au>Ishii, Norihiro</au><au>Yamanaka, Takahiro</au><au>Hagiwara, Kei</au><au>Tsukagoshi, Mariko</au><au>Igarashi, Takamichi</au><au>Watanabe, Akira</au><au>Kubo, Norio</au><au>Araki, Kenichiro</au><au>Handa, Tadashi</au><au>Yokobori, Takehiko</au><au>Oyama, Tetsunari</au><au>Kuwano, Hiroyuki</au><au>Shirabe, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling</atitle><jtitle>British journal of cancer</jtitle><stitle>Br J Cancer</stitle><addtitle>Br J Cancer</addtitle><date>2020-09-29</date><risdate>2020</risdate><volume>123</volume><issue>7</issue><spage>1145</spage><epage>1153</epage><pages>1145-1153</pages><issn>0007-0920</issn><eissn>1532-1827</eissn><abstract>Background Wisteria floribunda agglutinin (WFA) + Mac-2-binding protein (M2BPGi) is a novel serum marker for liver fibrosis. Although an elevated serum level of M2BPGi can predict development of hepatocellular carcinoma (HCC), the effect of M2BPGi on HCC remains unclear. There are no reports about the association of M2BPGi with HCC aggressiveness. We aimed to clarify the significance of M2BPGi in HCC. Methods The protein expression of M2BPGi and galectin-3, a ligand of M2BP, and the mRNA expression of M2BP were evaluated in surgically resected human HCC samples. M2BPGi-regulating signals in HCC cells were investigated using transcriptome analysis. The effects of M2BPGi on HCC properties and galectin-3/mTOR signaling were evaluated. Results M2BPGi and galectin-3 proteins co-localised in HCC cells, while M2BP mRNA was detected in cirrhotic liver stromal cells. mTOR signaling was upregulated in M2BPGi-treated HCC cells. Moreover, M2BPGi treatment induced tumour-promoting effects on HCC in vitro by activated mTOR signaling. In addition, M2BPGi bound to galectin-3 to induce membranous galectin-3 expression in HCC cells. In vivo, M2BPGi enhanced the growth of xenografted HCC. Conclusions M2BPGi is produced in stromal cells of the cirrhotic liver. Furthermore, M2BPGi enhances the progression of HCC through the galectin-3/mTOR pathway.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32624579</pmid><doi>10.1038/s41416-020-0971-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8085-2857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-0920
ispartof British journal of cancer, 2020-09, Vol.123 (7), p.1145-1153
issn 0007-0920
1532-1827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7525442
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/67/1504/1610/4029
692/4028/67/1504/1610/4029
Animals
Antigens, Neoplasm - analysis
Antigens, Neoplasm - physiology
Biomedical and Life Sciences
Biomedicine
Cancer Research
Carcinoma, Hepatocellular - pathology
Cell Line, Tumor
Disease Progression
Drug Resistance
Epidemiology
Female
Fibrosis
Galectin 3 - analysis
Galectin 3 - physiology
Galectin-3
Gene expression
Hepatocellular carcinoma
Hepatocytes
Humans
Liver cancer
Liver Neoplasms - pathology
Membrane Glycoproteins - analysis
Membrane Glycoproteins - physiology
Mice
Molecular Medicine
Oncology
Proteins
Signal Transduction - physiology
Stromal cells
TOR protein
TOR Serine-Threonine Kinases - physiology
Transcriptomes
Tumors
Xenografts
title Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mac-2-binding%20protein%20glycan%20isomer%20enhances%20the%20aggressiveness%20of%20hepatocellular%20carcinoma%20by%20activating%20mTOR%20signaling&rft.jtitle=British%20journal%20of%20cancer&rft.au=Dolgormaa,%20Gantumur&rft.date=2020-09-29&rft.volume=123&rft.issue=7&rft.spage=1145&rft.epage=1153&rft.pages=1145-1153&rft.issn=0007-0920&rft.eissn=1532-1827&rft_id=info:doi/10.1038/s41416-020-0971-y&rft_dat=%3Cproquest_pubme%3E2420624815%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474987621&rft_id=info:pmid/32624579&rfr_iscdi=true