Structural and functional modelling of SARS-CoV-2 entry in animal models
SARS-CoV-2 is the novel coronavirus responsible for the outbreak of COVID-19, a disease that has spread to over 100 countries and, as of the 26th July 2020, has infected over 16 million people. Despite the urgent need to find effective therapeutics, research on SARS-CoV-2 has been affected by a lack...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-09, Vol.10 (1), p.15917-15917, Article 15917 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15917 |
---|---|
container_issue | 1 |
container_start_page | 15917 |
container_title | Scientific reports |
container_volume | 10 |
creator | Brooke, Greg N. Prischi, Filippo |
description | SARS-CoV-2 is the novel coronavirus responsible for the outbreak of COVID-19, a disease that has spread to over 100 countries and, as of the 26th July 2020, has infected over 16 million people. Despite the urgent need to find effective therapeutics, research on SARS-CoV-2 has been affected by a lack of suitable animal models. To facilitate the development of medical approaches and novel treatments, we compared the ACE2 receptor, and TMPRSS2 and Furin proteases usage of the SARS-CoV-2 Spike glycoprotein in human and in a panel of animal models, i.e. guinea pig, dog, cat, rat, rabbit, ferret, mouse, hamster and macaque. Here we showed that ACE2, but not TMPRSS2 or Furin, has a higher level of sequence variability in the Spike protein interaction surface, which greatly influences Spike protein binding mode. Using molecular docking simulations we compared the SARS-CoV and SARS-CoV-2 Spike proteins in complex with the ACE2 receptor and showed that the SARS-CoV-2 Spike glycoprotein is compatible to bind the human ACE2 with high specificity. In contrast, TMPRSS2 and Furin are sufficiently similar in the considered hosts not to drive susceptibility differences. Computational analysis of binding modes and protein contacts indicates that macaque, ferrets and hamster are the most suitable models for the study of inhibitory antibodies and small molecules targeting the SARS-CoV-2 Spike protein interaction with ACE2. Since TMPRSS2 and Furin are similar across species, our data also suggest that transgenic animal models expressing human ACE2, such as the hACE2 transgenic mouse, are also likely to be useful models for studies investigating viral entry. |
doi_str_mv | 10.1038/s41598-020-72528-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7522990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446990395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-7c7856f3912af1192976606ec9ecfb41ce5fd1b5e57b419273394825e29184ef3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoKtU_4EH26CWaTJLdzUWQ4hcIglWvYZtN6pZtUpNdof31pq5KvZhLMswz70zmReiEknNKWHkRORWyxAQILkBAidc76BAIFxgYwO7W-wAdxzgn6QiQnMp9dMBAlkJQdojuJl3oddeHqs0qV2e2d7prvEvhwtembRs3y7zNJldPEzz2rxgy47qwyhqX-Gbxw8UjtGerNprj73uEXm6un8d3-OHx9n589YA1L1mHC12UIrdMUqgspRJkkeckN1oabaecaiNsTafCiCJFEgrGJC9BGJC05MayEbocdJf9dGFqvZmmatUypFnCSvmqUX8zrnlTM_-hCgEgJUkCZ98Cwb_3JnZq0USdflo54_uogPN8w0mRUBhQHXyMwdjfNpSojQtqcEElF9SXC2qdik63B_wt-dl5AtgAxJRyMxPU3PchbTz-J_sJT1qS4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446990395</pqid></control><display><type>article</type><title>Structural and functional modelling of SARS-CoV-2 entry in animal models</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Brooke, Greg N. ; Prischi, Filippo</creator><creatorcontrib>Brooke, Greg N. ; Prischi, Filippo</creatorcontrib><description>SARS-CoV-2 is the novel coronavirus responsible for the outbreak of COVID-19, a disease that has spread to over 100 countries and, as of the 26th July 2020, has infected over 16 million people. Despite the urgent need to find effective therapeutics, research on SARS-CoV-2 has been affected by a lack of suitable animal models. To facilitate the development of medical approaches and novel treatments, we compared the ACE2 receptor, and TMPRSS2 and Furin proteases usage of the SARS-CoV-2 Spike glycoprotein in human and in a panel of animal models, i.e. guinea pig, dog, cat, rat, rabbit, ferret, mouse, hamster and macaque. Here we showed that ACE2, but not TMPRSS2 or Furin, has a higher level of sequence variability in the Spike protein interaction surface, which greatly influences Spike protein binding mode. Using molecular docking simulations we compared the SARS-CoV and SARS-CoV-2 Spike proteins in complex with the ACE2 receptor and showed that the SARS-CoV-2 Spike glycoprotein is compatible to bind the human ACE2 with high specificity. In contrast, TMPRSS2 and Furin are sufficiently similar in the considered hosts not to drive susceptibility differences. Computational analysis of binding modes and protein contacts indicates that macaque, ferrets and hamster are the most suitable models for the study of inhibitory antibodies and small molecules targeting the SARS-CoV-2 Spike protein interaction with ACE2. Since TMPRSS2 and Furin are similar across species, our data also suggest that transgenic animal models expressing human ACE2, such as the hACE2 transgenic mouse, are also likely to be useful models for studies investigating viral entry.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72528-z</identifier><identifier>PMID: 32985513</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/255/2514 ; 631/45/612/1256 ; 631/535/1267 ; Amino Acid Sequence - genetics ; Angiotensin-Converting Enzyme 2 ; Animals ; Betacoronavirus - genetics ; Cats ; Computational Biology - methods ; Coronavirus Infections - pathology ; Coronavirus Infections - veterinary ; COVID-19 ; Cricetinae ; Disease Models, Animal ; Dogs ; Ferrets ; Furin - genetics ; Furin - metabolism ; Guinea Pigs ; Humanities and Social Sciences ; Humans ; Macaca fascicularis ; Mice ; Molecular Docking Simulation ; multidisciplinary ; Pandemics - veterinary ; Peptidyl-Dipeptidase A - genetics ; Peptidyl-Dipeptidase A - metabolism ; Pneumonia, Viral - pathology ; Pneumonia, Viral - veterinary ; Rabbits ; Rats ; SARS-CoV-2 ; Science ; Science (multidisciplinary) ; Serine Endopeptidases - genetics ; Serine Endopeptidases - metabolism ; Spike Glycoprotein, Coronavirus - genetics ; Spike Glycoprotein, Coronavirus - metabolism</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.15917-15917, Article 15917</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-7c7856f3912af1192976606ec9ecfb41ce5fd1b5e57b419273394825e29184ef3</citedby><cites>FETCH-LOGICAL-c483t-7c7856f3912af1192976606ec9ecfb41ce5fd1b5e57b419273394825e29184ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522990/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522990/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32985513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brooke, Greg N.</creatorcontrib><creatorcontrib>Prischi, Filippo</creatorcontrib><title>Structural and functional modelling of SARS-CoV-2 entry in animal models</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>SARS-CoV-2 is the novel coronavirus responsible for the outbreak of COVID-19, a disease that has spread to over 100 countries and, as of the 26th July 2020, has infected over 16 million people. Despite the urgent need to find effective therapeutics, research on SARS-CoV-2 has been affected by a lack of suitable animal models. To facilitate the development of medical approaches and novel treatments, we compared the ACE2 receptor, and TMPRSS2 and Furin proteases usage of the SARS-CoV-2 Spike glycoprotein in human and in a panel of animal models, i.e. guinea pig, dog, cat, rat, rabbit, ferret, mouse, hamster and macaque. Here we showed that ACE2, but not TMPRSS2 or Furin, has a higher level of sequence variability in the Spike protein interaction surface, which greatly influences Spike protein binding mode. Using molecular docking simulations we compared the SARS-CoV and SARS-CoV-2 Spike proteins in complex with the ACE2 receptor and showed that the SARS-CoV-2 Spike glycoprotein is compatible to bind the human ACE2 with high specificity. In contrast, TMPRSS2 and Furin are sufficiently similar in the considered hosts not to drive susceptibility differences. Computational analysis of binding modes and protein contacts indicates that macaque, ferrets and hamster are the most suitable models for the study of inhibitory antibodies and small molecules targeting the SARS-CoV-2 Spike protein interaction with ACE2. Since TMPRSS2 and Furin are similar across species, our data also suggest that transgenic animal models expressing human ACE2, such as the hACE2 transgenic mouse, are also likely to be useful models for studies investigating viral entry.</description><subject>631/250/255/2514</subject><subject>631/45/612/1256</subject><subject>631/535/1267</subject><subject>Amino Acid Sequence - genetics</subject><subject>Angiotensin-Converting Enzyme 2</subject><subject>Animals</subject><subject>Betacoronavirus - genetics</subject><subject>Cats</subject><subject>Computational Biology - methods</subject><subject>Coronavirus Infections - pathology</subject><subject>Coronavirus Infections - veterinary</subject><subject>COVID-19</subject><subject>Cricetinae</subject><subject>Disease Models, Animal</subject><subject>Dogs</subject><subject>Ferrets</subject><subject>Furin - genetics</subject><subject>Furin - metabolism</subject><subject>Guinea Pigs</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Macaca fascicularis</subject><subject>Mice</subject><subject>Molecular Docking Simulation</subject><subject>multidisciplinary</subject><subject>Pandemics - veterinary</subject><subject>Peptidyl-Dipeptidase A - genetics</subject><subject>Peptidyl-Dipeptidase A - metabolism</subject><subject>Pneumonia, Viral - pathology</subject><subject>Pneumonia, Viral - veterinary</subject><subject>Rabbits</subject><subject>Rats</subject><subject>SARS-CoV-2</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1LAzEQhoMoKtU_4EH26CWaTJLdzUWQ4hcIglWvYZtN6pZtUpNdof31pq5KvZhLMswz70zmReiEknNKWHkRORWyxAQILkBAidc76BAIFxgYwO7W-wAdxzgn6QiQnMp9dMBAlkJQdojuJl3oddeHqs0qV2e2d7prvEvhwtembRs3y7zNJldPEzz2rxgy47qwyhqX-Gbxw8UjtGerNprj73uEXm6un8d3-OHx9n589YA1L1mHC12UIrdMUqgspRJkkeckN1oabaecaiNsTafCiCJFEgrGJC9BGJC05MayEbocdJf9dGFqvZmmatUypFnCSvmqUX8zrnlTM_-hCgEgJUkCZ98Cwb_3JnZq0USdflo54_uogPN8w0mRUBhQHXyMwdjfNpSojQtqcEElF9SXC2qdik63B_wt-dl5AtgAxJRyMxPU3PchbTz-J_sJT1qS4A</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Brooke, Greg N.</creator><creator>Prischi, Filippo</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200928</creationdate><title>Structural and functional modelling of SARS-CoV-2 entry in animal models</title><author>Brooke, Greg N. ; Prischi, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-7c7856f3912af1192976606ec9ecfb41ce5fd1b5e57b419273394825e29184ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/250/255/2514</topic><topic>631/45/612/1256</topic><topic>631/535/1267</topic><topic>Amino Acid Sequence - genetics</topic><topic>Angiotensin-Converting Enzyme 2</topic><topic>Animals</topic><topic>Betacoronavirus - genetics</topic><topic>Cats</topic><topic>Computational Biology - methods</topic><topic>Coronavirus Infections - pathology</topic><topic>Coronavirus Infections - veterinary</topic><topic>COVID-19</topic><topic>Cricetinae</topic><topic>Disease Models, Animal</topic><topic>Dogs</topic><topic>Ferrets</topic><topic>Furin - genetics</topic><topic>Furin - metabolism</topic><topic>Guinea Pigs</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Macaca fascicularis</topic><topic>Mice</topic><topic>Molecular Docking Simulation</topic><topic>multidisciplinary</topic><topic>Pandemics - veterinary</topic><topic>Peptidyl-Dipeptidase A - genetics</topic><topic>Peptidyl-Dipeptidase A - metabolism</topic><topic>Pneumonia, Viral - pathology</topic><topic>Pneumonia, Viral - veterinary</topic><topic>Rabbits</topic><topic>Rats</topic><topic>SARS-CoV-2</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooke, Greg N.</creatorcontrib><creatorcontrib>Prischi, Filippo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooke, Greg N.</au><au>Prischi, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and functional modelling of SARS-CoV-2 entry in animal models</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-28</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>15917</spage><epage>15917</epage><pages>15917-15917</pages><artnum>15917</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>SARS-CoV-2 is the novel coronavirus responsible for the outbreak of COVID-19, a disease that has spread to over 100 countries and, as of the 26th July 2020, has infected over 16 million people. Despite the urgent need to find effective therapeutics, research on SARS-CoV-2 has been affected by a lack of suitable animal models. To facilitate the development of medical approaches and novel treatments, we compared the ACE2 receptor, and TMPRSS2 and Furin proteases usage of the SARS-CoV-2 Spike glycoprotein in human and in a panel of animal models, i.e. guinea pig, dog, cat, rat, rabbit, ferret, mouse, hamster and macaque. Here we showed that ACE2, but not TMPRSS2 or Furin, has a higher level of sequence variability in the Spike protein interaction surface, which greatly influences Spike protein binding mode. Using molecular docking simulations we compared the SARS-CoV and SARS-CoV-2 Spike proteins in complex with the ACE2 receptor and showed that the SARS-CoV-2 Spike glycoprotein is compatible to bind the human ACE2 with high specificity. In contrast, TMPRSS2 and Furin are sufficiently similar in the considered hosts not to drive susceptibility differences. Computational analysis of binding modes and protein contacts indicates that macaque, ferrets and hamster are the most suitable models for the study of inhibitory antibodies and small molecules targeting the SARS-CoV-2 Spike protein interaction with ACE2. Since TMPRSS2 and Furin are similar across species, our data also suggest that transgenic animal models expressing human ACE2, such as the hACE2 transgenic mouse, are also likely to be useful models for studies investigating viral entry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32985513</pmid><doi>10.1038/s41598-020-72528-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-09, Vol.10 (1), p.15917-15917, Article 15917 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7522990 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/250/255/2514 631/45/612/1256 631/535/1267 Amino Acid Sequence - genetics Angiotensin-Converting Enzyme 2 Animals Betacoronavirus - genetics Cats Computational Biology - methods Coronavirus Infections - pathology Coronavirus Infections - veterinary COVID-19 Cricetinae Disease Models, Animal Dogs Ferrets Furin - genetics Furin - metabolism Guinea Pigs Humanities and Social Sciences Humans Macaca fascicularis Mice Molecular Docking Simulation multidisciplinary Pandemics - veterinary Peptidyl-Dipeptidase A - genetics Peptidyl-Dipeptidase A - metabolism Pneumonia, Viral - pathology Pneumonia, Viral - veterinary Rabbits Rats SARS-CoV-2 Science Science (multidisciplinary) Serine Endopeptidases - genetics Serine Endopeptidases - metabolism Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - metabolism |
title | Structural and functional modelling of SARS-CoV-2 entry in animal models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20functional%20modelling%20of%20SARS-CoV-2%20entry%20in%20animal%20models&rft.jtitle=Scientific%20reports&rft.au=Brooke,%20Greg%20N.&rft.date=2020-09-28&rft.volume=10&rft.issue=1&rft.spage=15917&rft.epage=15917&rft.pages=15917-15917&rft.artnum=15917&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72528-z&rft_dat=%3Cproquest_pubme%3E2446990395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446990395&rft_id=info:pmid/32985513&rfr_iscdi=true |