Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish
Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (38), p.23450-23459 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23459 |
---|---|
container_issue | 38 |
container_start_page | 23450 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Yang, Ting Jia, Zian Chen, Hongshun Deng, Zhifei Liu, Wenkun Chen, Liuni Li, Ling |
description | Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN·m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrationswithin the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics. |
doi_str_mv | 10.1073/pnas.2009531117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7519314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969313</jstor_id><sourcerecordid>26969313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-1af200810000ab21ba2d35a2795510339b172e393e7583dcb56a647cd79795a73</originalsourceid><addsrcrecordid>eNpdkbuP1DAQxi0E4paDmgoUQUOTuxk_4rhBQide0iEaqC3H8W68ytqL7SDdf4-jPZZHNcX85pv55iPkOcIVgmTXx2DyFQVQgiGifEA2CArbjit4SDYAVLY9p_yCPMl5DyvXw2NywahCBkJsCH5xdjLBWzM3o8t-F5q4bcrkmsnvpvmuOcYUl9zYpZTZDTG4p-TR1szZPbuvl-T7h_ffbj61t18_fr55d9taLqG0aLb1rh7rUjADxcHQkQlDpRICgTE1oKSOKeak6NloB9GZjks7SlURI9kleXvSPS7DwY3WhZLMrI_JH0y609F4_W8n-Env4k8tBSqGvAq8OgnEXLzO1pdq1cYQnC0au54yARV6c78lxR-Ly0UffLZunk1w1bemnGMHUvWr3uv_0H1cUqg_WCkppFB8Fbw-UTbFnJPbni9G0Gtmes1M_8msTrz82-iZ_x1SBV6cgH0uMZ37tFNdNcrYLy9qmdI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447575940</pqid></control><display><type>article</type><title>Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Yang, Ting ; Jia, Zian ; Chen, Hongshun ; Deng, Zhifei ; Liu, Wenkun ; Chen, Liuni ; Li, Ling</creator><creatorcontrib>Yang, Ting ; Jia, Zian ; Chen, Hongshun ; Deng, Zhifei ; Liu, Wenkun ; Chen, Liuni ; Li, Ling ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN·m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrationswithin the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009531117</identifier><identifier>PMID: 32913055</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption ; Animals ; Aragonite ; asymmetric fracture ; Atmospheric pressure ; bio-inspired design ; Bioceramics ; Biomechanical Phenomena ; Biomimetic Materials - chemistry ; Bone and Bones - chemistry ; Buoyancy ; cellular ceramics ; Cellular structure ; Ceramics - chemistry ; Compression ; Correlation analysis ; cuttlebone ; Damage tolerance ; Densification ; Digital imaging ; Dimensional analysis ; Energy absorption ; Energy distribution ; ENGINEERING ; Equipment Design ; Hardness ; Image processing ; Marine mollusks ; Mechanical analysis ; Mechanical properties ; Microstructure ; Mollusks ; Physical Sciences ; Porosity ; Sepia - chemistry ; Septum ; Shellfish ; Stiffness ; Structural analysis ; Structural damage ; Water pressure ; Waviness</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (38), p.23450-23459</ispartof><rights>Copyright National Academy of Sciences Sep 22, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-1af200810000ab21ba2d35a2795510339b172e393e7583dcb56a647cd79795a73</citedby><cites>FETCH-LOGICAL-c470t-1af200810000ab21ba2d35a2795510339b172e393e7583dcb56a647cd79795a73</cites><orcidid>0000-0002-6741-9741 ; 0000-0002-0181-9961 ; 0000000267419741 ; 0000000201819961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969313$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969313$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27926,27927,53793,53795,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32913055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1682350$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Jia, Zian</creatorcontrib><creatorcontrib>Chen, Hongshun</creatorcontrib><creatorcontrib>Deng, Zhifei</creatorcontrib><creatorcontrib>Liu, Wenkun</creatorcontrib><creatorcontrib>Chen, Liuni</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN·m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrationswithin the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.</description><subject>Absorption</subject><subject>Animals</subject><subject>Aragonite</subject><subject>asymmetric fracture</subject><subject>Atmospheric pressure</subject><subject>bio-inspired design</subject><subject>Bioceramics</subject><subject>Biomechanical Phenomena</subject><subject>Biomimetic Materials - chemistry</subject><subject>Bone and Bones - chemistry</subject><subject>Buoyancy</subject><subject>cellular ceramics</subject><subject>Cellular structure</subject><subject>Ceramics - chemistry</subject><subject>Compression</subject><subject>Correlation analysis</subject><subject>cuttlebone</subject><subject>Damage tolerance</subject><subject>Densification</subject><subject>Digital imaging</subject><subject>Dimensional analysis</subject><subject>Energy absorption</subject><subject>Energy distribution</subject><subject>ENGINEERING</subject><subject>Equipment Design</subject><subject>Hardness</subject><subject>Image processing</subject><subject>Marine mollusks</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Mollusks</subject><subject>Physical Sciences</subject><subject>Porosity</subject><subject>Sepia - chemistry</subject><subject>Septum</subject><subject>Shellfish</subject><subject>Stiffness</subject><subject>Structural analysis</subject><subject>Structural damage</subject><subject>Water pressure</subject><subject>Waviness</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkbuP1DAQxi0E4paDmgoUQUOTuxk_4rhBQide0iEaqC3H8W68ytqL7SDdf4-jPZZHNcX85pv55iPkOcIVgmTXx2DyFQVQgiGifEA2CArbjit4SDYAVLY9p_yCPMl5DyvXw2NywahCBkJsCH5xdjLBWzM3o8t-F5q4bcrkmsnvpvmuOcYUl9zYpZTZDTG4p-TR1szZPbuvl-T7h_ffbj61t18_fr55d9taLqG0aLb1rh7rUjADxcHQkQlDpRICgTE1oKSOKeak6NloB9GZjks7SlURI9kleXvSPS7DwY3WhZLMrI_JH0y609F4_W8n-Env4k8tBSqGvAq8OgnEXLzO1pdq1cYQnC0au54yARV6c78lxR-Ly0UffLZunk1w1bemnGMHUvWr3uv_0H1cUqg_WCkppFB8Fbw-UTbFnJPbni9G0Gtmes1M_8msTrz82-iZ_x1SBV6cgH0uMZ37tFNdNcrYLy9qmdI</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Yang, Ting</creator><creator>Jia, Zian</creator><creator>Chen, Hongshun</creator><creator>Deng, Zhifei</creator><creator>Liu, Wenkun</creator><creator>Chen, Liuni</creator><creator>Li, Ling</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6741-9741</orcidid><orcidid>https://orcid.org/0000-0002-0181-9961</orcidid><orcidid>https://orcid.org/0000000267419741</orcidid><orcidid>https://orcid.org/0000000201819961</orcidid></search><sort><creationdate>20200922</creationdate><title>Mechanical design of the highly porous cuttlebone</title><author>Yang, Ting ; Jia, Zian ; Chen, Hongshun ; Deng, Zhifei ; Liu, Wenkun ; Chen, Liuni ; Li, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-1af200810000ab21ba2d35a2795510339b172e393e7583dcb56a647cd79795a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Aragonite</topic><topic>asymmetric fracture</topic><topic>Atmospheric pressure</topic><topic>bio-inspired design</topic><topic>Bioceramics</topic><topic>Biomechanical Phenomena</topic><topic>Biomimetic Materials - chemistry</topic><topic>Bone and Bones - chemistry</topic><topic>Buoyancy</topic><topic>cellular ceramics</topic><topic>Cellular structure</topic><topic>Ceramics - chemistry</topic><topic>Compression</topic><topic>Correlation analysis</topic><topic>cuttlebone</topic><topic>Damage tolerance</topic><topic>Densification</topic><topic>Digital imaging</topic><topic>Dimensional analysis</topic><topic>Energy absorption</topic><topic>Energy distribution</topic><topic>ENGINEERING</topic><topic>Equipment Design</topic><topic>Hardness</topic><topic>Image processing</topic><topic>Marine mollusks</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Mollusks</topic><topic>Physical Sciences</topic><topic>Porosity</topic><topic>Sepia - chemistry</topic><topic>Septum</topic><topic>Shellfish</topic><topic>Stiffness</topic><topic>Structural analysis</topic><topic>Structural damage</topic><topic>Water pressure</topic><topic>Waviness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Jia, Zian</creatorcontrib><creatorcontrib>Chen, Hongshun</creatorcontrib><creatorcontrib>Deng, Zhifei</creatorcontrib><creatorcontrib>Liu, Wenkun</creatorcontrib><creatorcontrib>Chen, Liuni</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ting</au><au>Jia, Zian</au><au>Chen, Hongshun</au><au>Deng, Zhifei</au><au>Liu, Wenkun</au><au>Chen, Liuni</au><au>Li, Ling</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-09-22</date><risdate>2020</risdate><volume>117</volume><issue>38</issue><spage>23450</spage><epage>23459</epage><pages>23450-23459</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN·m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrationswithin the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32913055</pmid><doi>10.1073/pnas.2009531117</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6741-9741</orcidid><orcidid>https://orcid.org/0000-0002-0181-9961</orcidid><orcidid>https://orcid.org/0000000267419741</orcidid><orcidid>https://orcid.org/0000000201819961</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (38), p.23450-23459 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7519314 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Absorption Animals Aragonite asymmetric fracture Atmospheric pressure bio-inspired design Bioceramics Biomechanical Phenomena Biomimetic Materials - chemistry Bone and Bones - chemistry Buoyancy cellular ceramics Cellular structure Ceramics - chemistry Compression Correlation analysis cuttlebone Damage tolerance Densification Digital imaging Dimensional analysis Energy absorption Energy distribution ENGINEERING Equipment Design Hardness Image processing Marine mollusks Mechanical analysis Mechanical properties Microstructure Mollusks Physical Sciences Porosity Sepia - chemistry Septum Shellfish Stiffness Structural analysis Structural damage Water pressure Waviness |
title | Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20design%20of%20the%20highly%20porous%20cuttlebone:%20A%20bioceramic%20hard%20buoyancy%20tank%20for%20cuttlefish&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Ting&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-09-22&rft.volume=117&rft.issue=38&rft.spage=23450&rft.epage=23459&rft.pages=23450-23459&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009531117&rft_dat=%3Cjstor_pubme%3E26969313%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447575940&rft_id=info:pmid/32913055&rft_jstor_id=26969313&rfr_iscdi=true |