Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish

Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (38), p.23450-23459
Hauptverfasser: Yang, Ting, Jia, Zian, Chen, Hongshun, Deng, Zhifei, Liu, Wenkun, Chen, Liuni, Li, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23459
container_issue 38
container_start_page 23450
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Yang, Ting
Jia, Zian
Chen, Hongshun
Deng, Zhifei
Liu, Wenkun
Chen, Liuni
Li, Ling
description Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN·m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrationswithin the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.
doi_str_mv 10.1073/pnas.2009531117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7519314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969313</jstor_id><sourcerecordid>26969313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-1af200810000ab21ba2d35a2795510339b172e393e7583dcb56a647cd79795a73</originalsourceid><addsrcrecordid>eNpdkbuP1DAQxi0E4paDmgoUQUOTuxk_4rhBQide0iEaqC3H8W68ytqL7SDdf4-jPZZHNcX85pv55iPkOcIVgmTXx2DyFQVQgiGifEA2CArbjit4SDYAVLY9p_yCPMl5DyvXw2NywahCBkJsCH5xdjLBWzM3o8t-F5q4bcrkmsnvpvmuOcYUl9zYpZTZDTG4p-TR1szZPbuvl-T7h_ffbj61t18_fr55d9taLqG0aLb1rh7rUjADxcHQkQlDpRICgTE1oKSOKeak6NloB9GZjks7SlURI9kleXvSPS7DwY3WhZLMrI_JH0y609F4_W8n-Env4k8tBSqGvAq8OgnEXLzO1pdq1cYQnC0au54yARV6c78lxR-Ly0UffLZunk1w1bemnGMHUvWr3uv_0H1cUqg_WCkppFB8Fbw-UTbFnJPbni9G0Gtmes1M_8msTrz82-iZ_x1SBV6cgH0uMZ37tFNdNcrYLy9qmdI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447575940</pqid></control><display><type>article</type><title>Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Yang, Ting ; Jia, Zian ; Chen, Hongshun ; Deng, Zhifei ; Liu, Wenkun ; Chen, Liuni ; Li, Ling</creator><creatorcontrib>Yang, Ting ; Jia, Zian ; Chen, Hongshun ; Deng, Zhifei ; Liu, Wenkun ; Chen, Liuni ; Li, Ling ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN·m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrationswithin the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009531117</identifier><identifier>PMID: 32913055</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption ; Animals ; Aragonite ; asymmetric fracture ; Atmospheric pressure ; bio-inspired design ; Bioceramics ; Biomechanical Phenomena ; Biomimetic Materials - chemistry ; Bone and Bones - chemistry ; Buoyancy ; cellular ceramics ; Cellular structure ; Ceramics - chemistry ; Compression ; Correlation analysis ; cuttlebone ; Damage tolerance ; Densification ; Digital imaging ; Dimensional analysis ; Energy absorption ; Energy distribution ; ENGINEERING ; Equipment Design ; Hardness ; Image processing ; Marine mollusks ; Mechanical analysis ; Mechanical properties ; Microstructure ; Mollusks ; Physical Sciences ; Porosity ; Sepia - chemistry ; Septum ; Shellfish ; Stiffness ; Structural analysis ; Structural damage ; Water pressure ; Waviness</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (38), p.23450-23459</ispartof><rights>Copyright National Academy of Sciences Sep 22, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-1af200810000ab21ba2d35a2795510339b172e393e7583dcb56a647cd79795a73</citedby><cites>FETCH-LOGICAL-c470t-1af200810000ab21ba2d35a2795510339b172e393e7583dcb56a647cd79795a73</cites><orcidid>0000-0002-6741-9741 ; 0000-0002-0181-9961 ; 0000000267419741 ; 0000000201819961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969313$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969313$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27926,27927,53793,53795,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32913055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1682350$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Jia, Zian</creatorcontrib><creatorcontrib>Chen, Hongshun</creatorcontrib><creatorcontrib>Deng, Zhifei</creatorcontrib><creatorcontrib>Liu, Wenkun</creatorcontrib><creatorcontrib>Chen, Liuni</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN·m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrationswithin the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.</description><subject>Absorption</subject><subject>Animals</subject><subject>Aragonite</subject><subject>asymmetric fracture</subject><subject>Atmospheric pressure</subject><subject>bio-inspired design</subject><subject>Bioceramics</subject><subject>Biomechanical Phenomena</subject><subject>Biomimetic Materials - chemistry</subject><subject>Bone and Bones - chemistry</subject><subject>Buoyancy</subject><subject>cellular ceramics</subject><subject>Cellular structure</subject><subject>Ceramics - chemistry</subject><subject>Compression</subject><subject>Correlation analysis</subject><subject>cuttlebone</subject><subject>Damage tolerance</subject><subject>Densification</subject><subject>Digital imaging</subject><subject>Dimensional analysis</subject><subject>Energy absorption</subject><subject>Energy distribution</subject><subject>ENGINEERING</subject><subject>Equipment Design</subject><subject>Hardness</subject><subject>Image processing</subject><subject>Marine mollusks</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Mollusks</subject><subject>Physical Sciences</subject><subject>Porosity</subject><subject>Sepia - chemistry</subject><subject>Septum</subject><subject>Shellfish</subject><subject>Stiffness</subject><subject>Structural analysis</subject><subject>Structural damage</subject><subject>Water pressure</subject><subject>Waviness</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkbuP1DAQxi0E4paDmgoUQUOTuxk_4rhBQide0iEaqC3H8W68ytqL7SDdf4-jPZZHNcX85pv55iPkOcIVgmTXx2DyFQVQgiGifEA2CArbjit4SDYAVLY9p_yCPMl5DyvXw2NywahCBkJsCH5xdjLBWzM3o8t-F5q4bcrkmsnvpvmuOcYUl9zYpZTZDTG4p-TR1szZPbuvl-T7h_ffbj61t18_fr55d9taLqG0aLb1rh7rUjADxcHQkQlDpRICgTE1oKSOKeak6NloB9GZjks7SlURI9kleXvSPS7DwY3WhZLMrI_JH0y609F4_W8n-Env4k8tBSqGvAq8OgnEXLzO1pdq1cYQnC0au54yARV6c78lxR-Ly0UffLZunk1w1bemnGMHUvWr3uv_0H1cUqg_WCkppFB8Fbw-UTbFnJPbni9G0Gtmes1M_8msTrz82-iZ_x1SBV6cgH0uMZ37tFNdNcrYLy9qmdI</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Yang, Ting</creator><creator>Jia, Zian</creator><creator>Chen, Hongshun</creator><creator>Deng, Zhifei</creator><creator>Liu, Wenkun</creator><creator>Chen, Liuni</creator><creator>Li, Ling</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6741-9741</orcidid><orcidid>https://orcid.org/0000-0002-0181-9961</orcidid><orcidid>https://orcid.org/0000000267419741</orcidid><orcidid>https://orcid.org/0000000201819961</orcidid></search><sort><creationdate>20200922</creationdate><title>Mechanical design of the highly porous cuttlebone</title><author>Yang, Ting ; Jia, Zian ; Chen, Hongshun ; Deng, Zhifei ; Liu, Wenkun ; Chen, Liuni ; Li, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-1af200810000ab21ba2d35a2795510339b172e393e7583dcb56a647cd79795a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Aragonite</topic><topic>asymmetric fracture</topic><topic>Atmospheric pressure</topic><topic>bio-inspired design</topic><topic>Bioceramics</topic><topic>Biomechanical Phenomena</topic><topic>Biomimetic Materials - chemistry</topic><topic>Bone and Bones - chemistry</topic><topic>Buoyancy</topic><topic>cellular ceramics</topic><topic>Cellular structure</topic><topic>Ceramics - chemistry</topic><topic>Compression</topic><topic>Correlation analysis</topic><topic>cuttlebone</topic><topic>Damage tolerance</topic><topic>Densification</topic><topic>Digital imaging</topic><topic>Dimensional analysis</topic><topic>Energy absorption</topic><topic>Energy distribution</topic><topic>ENGINEERING</topic><topic>Equipment Design</topic><topic>Hardness</topic><topic>Image processing</topic><topic>Marine mollusks</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Mollusks</topic><topic>Physical Sciences</topic><topic>Porosity</topic><topic>Sepia - chemistry</topic><topic>Septum</topic><topic>Shellfish</topic><topic>Stiffness</topic><topic>Structural analysis</topic><topic>Structural damage</topic><topic>Water pressure</topic><topic>Waviness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Jia, Zian</creatorcontrib><creatorcontrib>Chen, Hongshun</creatorcontrib><creatorcontrib>Deng, Zhifei</creatorcontrib><creatorcontrib>Liu, Wenkun</creatorcontrib><creatorcontrib>Chen, Liuni</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ting</au><au>Jia, Zian</au><au>Chen, Hongshun</au><au>Deng, Zhifei</au><au>Liu, Wenkun</au><au>Chen, Liuni</au><au>Li, Ling</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-09-22</date><risdate>2020</risdate><volume>117</volume><issue>38</issue><spage>23450</spage><epage>23459</epage><pages>23450-23459</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal’s hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis. Currently, our knowledge on the structural origins for cuttlebone’s remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered “wall–septa” microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN·m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrationswithin the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32913055</pmid><doi>10.1073/pnas.2009531117</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6741-9741</orcidid><orcidid>https://orcid.org/0000-0002-0181-9961</orcidid><orcidid>https://orcid.org/0000000267419741</orcidid><orcidid>https://orcid.org/0000000201819961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (38), p.23450-23459
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7519314
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Absorption
Animals
Aragonite
asymmetric fracture
Atmospheric pressure
bio-inspired design
Bioceramics
Biomechanical Phenomena
Biomimetic Materials - chemistry
Bone and Bones - chemistry
Buoyancy
cellular ceramics
Cellular structure
Ceramics - chemistry
Compression
Correlation analysis
cuttlebone
Damage tolerance
Densification
Digital imaging
Dimensional analysis
Energy absorption
Energy distribution
ENGINEERING
Equipment Design
Hardness
Image processing
Marine mollusks
Mechanical analysis
Mechanical properties
Microstructure
Mollusks
Physical Sciences
Porosity
Sepia - chemistry
Septum
Shellfish
Stiffness
Structural analysis
Structural damage
Water pressure
Waviness
title Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20design%20of%20the%20highly%20porous%20cuttlebone:%20A%20bioceramic%20hard%20buoyancy%20tank%20for%20cuttlefish&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Ting&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-09-22&rft.volume=117&rft.issue=38&rft.spage=23450&rft.epage=23459&rft.pages=23450-23459&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009531117&rft_dat=%3Cjstor_pubme%3E26969313%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447575940&rft_id=info:pmid/32913055&rft_jstor_id=26969313&rfr_iscdi=true