Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forwa...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-09, Vol.10 (1), p.15635-15635, Article 15635 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15635 |
---|---|
container_issue | 1 |
container_start_page | 15635 |
container_title | Scientific reports |
container_volume | 10 |
creator | Comes, Maria Colomba Filippi, J. Mencattini, A. Corsi, F. Casti, P. De Ninno, A. Di Giuseppe, D. D’Orazio, M. Ghibelli, L. Mattei, F. Schiavoni, G. Businaro, L. Di Natale, C. Martinelli, E. |
description | The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forward long-term prediction of cell trajectories may reduce the spatial–temporal burden of video sequences storage. Cell trajectory prediction becomes crucial especially to increase the trustworthiness in software tools designed to conduct a massive analysis of cell behavior under chemical stimuli. To address this task, we transpose here the exploitation of the presence of “social forces” from the human to the cellular level for motion prediction at microscale by adapting the potential of Social Generative Adversarial Network predictors to cell motility. To demonstrate the effectiveness of the approach, we consider here two case studies: one related to PC-3 prostate cancer cells cultured in 2D Petri dishes under control and treated conditions and one related to an OoC experiment of tumor-immune interaction in fibrosarcoma cells. The goodness of the proposed strategy has been verified by successfully comparing the distributions of common descriptors (kinematic descriptors and mean interaction time for the two scenarios respectively) from the trajectories obtained by video analysis and the predicted counterparts. |
doi_str_mv | 10.1038/s41598-020-72605-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7519062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446667406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-429e56a24389ef0701011f6a78f4924c4935354cb9449aa702b27d16e832e4193</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EolXbP8AB-chlwV_7YQ5IUVUKUkUPtGfLcWYTh429jL2B_o3-YpxuqcoFX2zNPPOOZ15C3nD2njPZfUiK17qrmGBVKxpWV_IFORZM1ZWQQrx89j4iZyltWTm10Irr1-RICt1KyfgxuV84BwOgzT6sad4Ahd8joN9ByHagCGmMIUGiMdACDnQJG7v3EdNHaukQw7rKgDs6Iqy8y75gsZ_JjHYLLkf0pXxKB_3v0fmiegnhoeMe6GK1B0wWD-FvkH9F_HFKXvV2SHD2eJ-Q288XN-dfqqvry6_ni6vKqU7mSgkNdWOFkp2GnrWMM877xrZdr7RQTmlZy1q5pVZKW9sysRTtijfQSQFlDfKEfJp1x2m5g5UrE6MdzFiGt3hnovXm30zwG7OOe9PWXLNGFIF3jwIYf06Qstn5dBjdBohTMkKppmlaxZqCihl1GFNC6J_acGYOfprZT1P8NA9-GlmK3j7_4FPJX_cKIGcglVRYA5ptnDCUpf1P9g8-ka5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446667406</pqid></control><display><type>article</type><title>Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Comes, Maria Colomba ; Filippi, J. ; Mencattini, A. ; Corsi, F. ; Casti, P. ; De Ninno, A. ; Di Giuseppe, D. ; D’Orazio, M. ; Ghibelli, L. ; Mattei, F. ; Schiavoni, G. ; Businaro, L. ; Di Natale, C. ; Martinelli, E.</creator><creatorcontrib>Comes, Maria Colomba ; Filippi, J. ; Mencattini, A. ; Corsi, F. ; Casti, P. ; De Ninno, A. ; Di Giuseppe, D. ; D’Orazio, M. ; Ghibelli, L. ; Mattei, F. ; Schiavoni, G. ; Businaro, L. ; Di Natale, C. ; Martinelli, E.</creatorcontrib><description>The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forward long-term prediction of cell trajectories may reduce the spatial–temporal burden of video sequences storage. Cell trajectory prediction becomes crucial especially to increase the trustworthiness in software tools designed to conduct a massive analysis of cell behavior under chemical stimuli. To address this task, we transpose here the exploitation of the presence of “social forces” from the human to the cellular level for motion prediction at microscale by adapting the potential of Social Generative Adversarial Network predictors to cell motility. To demonstrate the effectiveness of the approach, we consider here two case studies: one related to PC-3 prostate cancer cells cultured in 2D Petri dishes under control and treated conditions and one related to an OoC experiment of tumor-immune interaction in fibrosarcoma cells. The goodness of the proposed strategy has been verified by successfully comparing the distributions of common descriptors (kinematic descriptors and mean interaction time for the two scenarios respectively) from the trajectories obtained by video analysis and the predicted counterparts.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72605-3</identifier><identifier>PMID: 32973301</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 639/166/987 ; Algorithms ; Cells - cytology ; Computational Biology - methods ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.15635-15635, Article 15635</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-429e56a24389ef0701011f6a78f4924c4935354cb9449aa702b27d16e832e4193</citedby><cites>FETCH-LOGICAL-c483t-429e56a24389ef0701011f6a78f4924c4935354cb9449aa702b27d16e832e4193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519062/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519062/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32973301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Comes, Maria Colomba</creatorcontrib><creatorcontrib>Filippi, J.</creatorcontrib><creatorcontrib>Mencattini, A.</creatorcontrib><creatorcontrib>Corsi, F.</creatorcontrib><creatorcontrib>Casti, P.</creatorcontrib><creatorcontrib>De Ninno, A.</creatorcontrib><creatorcontrib>Di Giuseppe, D.</creatorcontrib><creatorcontrib>D’Orazio, M.</creatorcontrib><creatorcontrib>Ghibelli, L.</creatorcontrib><creatorcontrib>Mattei, F.</creatorcontrib><creatorcontrib>Schiavoni, G.</creatorcontrib><creatorcontrib>Businaro, L.</creatorcontrib><creatorcontrib>Di Natale, C.</creatorcontrib><creatorcontrib>Martinelli, E.</creatorcontrib><title>Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forward long-term prediction of cell trajectories may reduce the spatial–temporal burden of video sequences storage. Cell trajectory prediction becomes crucial especially to increase the trustworthiness in software tools designed to conduct a massive analysis of cell behavior under chemical stimuli. To address this task, we transpose here the exploitation of the presence of “social forces” from the human to the cellular level for motion prediction at microscale by adapting the potential of Social Generative Adversarial Network predictors to cell motility. To demonstrate the effectiveness of the approach, we consider here two case studies: one related to PC-3 prostate cancer cells cultured in 2D Petri dishes under control and treated conditions and one related to an OoC experiment of tumor-immune interaction in fibrosarcoma cells. The goodness of the proposed strategy has been verified by successfully comparing the distributions of common descriptors (kinematic descriptors and mean interaction time for the two scenarios respectively) from the trajectories obtained by video analysis and the predicted counterparts.</description><subject>639/166/985</subject><subject>639/166/987</subject><subject>Algorithms</subject><subject>Cells - cytology</subject><subject>Computational Biology - methods</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1vEzEQhi0EolXbP8AB-chlwV_7YQ5IUVUKUkUPtGfLcWYTh429jL2B_o3-YpxuqcoFX2zNPPOOZ15C3nD2njPZfUiK17qrmGBVKxpWV_IFORZM1ZWQQrx89j4iZyltWTm10Irr1-RICt1KyfgxuV84BwOgzT6sad4Ahd8joN9ByHagCGmMIUGiMdACDnQJG7v3EdNHaukQw7rKgDs6Iqy8y75gsZ_JjHYLLkf0pXxKB_3v0fmiegnhoeMe6GK1B0wWD-FvkH9F_HFKXvV2SHD2eJ-Q288XN-dfqqvry6_ni6vKqU7mSgkNdWOFkp2GnrWMM877xrZdr7RQTmlZy1q5pVZKW9sysRTtijfQSQFlDfKEfJp1x2m5g5UrE6MdzFiGt3hnovXm30zwG7OOe9PWXLNGFIF3jwIYf06Qstn5dBjdBohTMkKppmlaxZqCihl1GFNC6J_acGYOfprZT1P8NA9-GlmK3j7_4FPJX_cKIGcglVRYA5ptnDCUpf1P9g8-ka5U</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Comes, Maria Colomba</creator><creator>Filippi, J.</creator><creator>Mencattini, A.</creator><creator>Corsi, F.</creator><creator>Casti, P.</creator><creator>De Ninno, A.</creator><creator>Di Giuseppe, D.</creator><creator>D’Orazio, M.</creator><creator>Ghibelli, L.</creator><creator>Mattei, F.</creator><creator>Schiavoni, G.</creator><creator>Businaro, L.</creator><creator>Di Natale, C.</creator><creator>Martinelli, E.</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200924</creationdate><title>Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network</title><author>Comes, Maria Colomba ; Filippi, J. ; Mencattini, A. ; Corsi, F. ; Casti, P. ; De Ninno, A. ; Di Giuseppe, D. ; D’Orazio, M. ; Ghibelli, L. ; Mattei, F. ; Schiavoni, G. ; Businaro, L. ; Di Natale, C. ; Martinelli, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-429e56a24389ef0701011f6a78f4924c4935354cb9449aa702b27d16e832e4193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/985</topic><topic>639/166/987</topic><topic>Algorithms</topic><topic>Cells - cytology</topic><topic>Computational Biology - methods</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Comes, Maria Colomba</creatorcontrib><creatorcontrib>Filippi, J.</creatorcontrib><creatorcontrib>Mencattini, A.</creatorcontrib><creatorcontrib>Corsi, F.</creatorcontrib><creatorcontrib>Casti, P.</creatorcontrib><creatorcontrib>De Ninno, A.</creatorcontrib><creatorcontrib>Di Giuseppe, D.</creatorcontrib><creatorcontrib>D’Orazio, M.</creatorcontrib><creatorcontrib>Ghibelli, L.</creatorcontrib><creatorcontrib>Mattei, F.</creatorcontrib><creatorcontrib>Schiavoni, G.</creatorcontrib><creatorcontrib>Businaro, L.</creatorcontrib><creatorcontrib>Di Natale, C.</creatorcontrib><creatorcontrib>Martinelli, E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Comes, Maria Colomba</au><au>Filippi, J.</au><au>Mencattini, A.</au><au>Corsi, F.</au><au>Casti, P.</au><au>De Ninno, A.</au><au>Di Giuseppe, D.</au><au>D’Orazio, M.</au><au>Ghibelli, L.</au><au>Mattei, F.</au><au>Schiavoni, G.</au><au>Businaro, L.</au><au>Di Natale, C.</au><au>Martinelli, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-24</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>15635</spage><epage>15635</epage><pages>15635-15635</pages><artnum>15635</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forward long-term prediction of cell trajectories may reduce the spatial–temporal burden of video sequences storage. Cell trajectory prediction becomes crucial especially to increase the trustworthiness in software tools designed to conduct a massive analysis of cell behavior under chemical stimuli. To address this task, we transpose here the exploitation of the presence of “social forces” from the human to the cellular level for motion prediction at microscale by adapting the potential of Social Generative Adversarial Network predictors to cell motility. To demonstrate the effectiveness of the approach, we consider here two case studies: one related to PC-3 prostate cancer cells cultured in 2D Petri dishes under control and treated conditions and one related to an OoC experiment of tumor-immune interaction in fibrosarcoma cells. The goodness of the proposed strategy has been verified by successfully comparing the distributions of common descriptors (kinematic descriptors and mean interaction time for the two scenarios respectively) from the trajectories obtained by video analysis and the predicted counterparts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32973301</pmid><doi>10.1038/s41598-020-72605-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-09, Vol.10 (1), p.15635-15635, Article 15635 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7519062 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/166/985 639/166/987 Algorithms Cells - cytology Computational Biology - methods Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20the%20experimental%20responses%20on%20cell%20behaviors:%20a%20long-term%20prediction%20of%20cell%20trajectories%20using%20Social%20Generative%20Adversarial%20Network&rft.jtitle=Scientific%20reports&rft.au=Comes,%20Maria%20Colomba&rft.date=2020-09-24&rft.volume=10&rft.issue=1&rft.spage=15635&rft.epage=15635&rft.pages=15635-15635&rft.artnum=15635&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72605-3&rft_dat=%3Cproquest_pubme%3E2446667406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446667406&rft_id=info:pmid/32973301&rfr_iscdi=true |