2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma

For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-09, Vol.10 (1), p.15625-15625, Article 15625
Hauptverfasser: Starke, Sebastian, Leger, Stefan, Zwanenburg, Alex, Leger, Karoline, Lohaus, Fabian, Linge, Annett, Schreiber, Andreas, Kalinauskaite, Goda, Tinhofer, Inge, Guberina, Nika, Guberina, Maja, Balermpas, Panagiotis, von der Grün, Jens, Ganswindt, Ute, Belka, Claus, Peeken, Jan C., Combs, Stephanie E., Boeke, Simon, Zips, Daniel, Richter, Christian, Troost, Esther G. C., Krause, Mechthild, Baumann, Michael, Löck, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15625
container_issue 1
container_start_page 15625
container_title Scientific reports
container_volume 10
creator Starke, Sebastian
Leger, Stefan
Zwanenburg, Alex
Leger, Karoline
Lohaus, Fabian
Linge, Annett
Schreiber, Andreas
Kalinauskaite, Goda
Tinhofer, Inge
Guberina, Nika
Guberina, Maja
Balermpas, Panagiotis
von der Grün, Jens
Ganswindt, Ute
Belka, Claus
Peeken, Jan C.
Combs, Stephanie E.
Boeke, Simon
Zips, Daniel
Richter, Christian
Troost, Esther G. C.
Krause, Mechthild
Baumann, Michael
Löck, Steffen
description For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model ( p = 0.001 ). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.
doi_str_mv 10.1038/s41598-020-70542-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7518264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446665497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-313612c87aafd8357ac43c24f4e82a3abb4eb77279afd31a2ce6a1430f0ee7fd3</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtVArQAt_gEPlYy8Be-zEyaVSxUeLhNQLPVuzzmQJJDbYya7495hdQPRSX8bye_Nmnh9jJ1KcSqHqs6Rl2dSFAFEYUWoomj12CEKXBSiAL5_uB-w4pXuRTwmNls0-O1DQmIyIQ7aBC46-5eqCu-DXYZinPngcuKc5bsu0CfEh8S5EHubJhZH4GFoaht6veOj4EBwOwzPHdo3eUcvvCNutpif3wNPTjGOYE3e5hTuMrvdhxCP2tcMh0fFbXbC_V5e357-Lmz-_rs9_3hRO62oqlFSVBFcbxK6tVWnQaeVAd5pqQIXLpaalMWCajCuJ4KhCqZXoBJHJTwv2Y6f7OC9Hah35Kduyj7EfMT7bgL39F_H9nV2FtTWlrKHSWeD7m0AMTzOlyY59evWCnrItC3nPqip1_tAFgx3VxZBSpO5jjBT2NTS7C83m0Ow2NNvkpm-fF_xoeY8oE9SOkDLkVxTtfZhjjij9T_YF54mlUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446665497</pqid></control><display><type>article</type><title>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Starke, Sebastian ; Leger, Stefan ; Zwanenburg, Alex ; Leger, Karoline ; Lohaus, Fabian ; Linge, Annett ; Schreiber, Andreas ; Kalinauskaite, Goda ; Tinhofer, Inge ; Guberina, Nika ; Guberina, Maja ; Balermpas, Panagiotis ; von der Grün, Jens ; Ganswindt, Ute ; Belka, Claus ; Peeken, Jan C. ; Combs, Stephanie E. ; Boeke, Simon ; Zips, Daniel ; Richter, Christian ; Troost, Esther G. C. ; Krause, Mechthild ; Baumann, Michael ; Löck, Steffen</creator><creatorcontrib>Starke, Sebastian ; Leger, Stefan ; Zwanenburg, Alex ; Leger, Karoline ; Lohaus, Fabian ; Linge, Annett ; Schreiber, Andreas ; Kalinauskaite, Goda ; Tinhofer, Inge ; Guberina, Nika ; Guberina, Maja ; Balermpas, Panagiotis ; von der Grün, Jens ; Ganswindt, Ute ; Belka, Claus ; Peeken, Jan C. ; Combs, Stephanie E. ; Boeke, Simon ; Zips, Daniel ; Richter, Christian ; Troost, Esther G. C. ; Krause, Mechthild ; Baumann, Michael ; Löck, Steffen</creatorcontrib><description>For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model ( p = 0.001 ). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-70542-9</identifier><identifier>PMID: 32973220</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/4028/67/1536 ; 692/4028/67/2321 ; 692/53/2423 ; Adult ; Aged ; Aged, 80 and over ; Chemoradiotherapy - mortality ; Female ; Follow-Up Studies ; Head and Neck Neoplasms - diagnostic imaging ; Head and Neck Neoplasms - mortality ; Head and Neck Neoplasms - pathology ; Head and Neck Neoplasms - therapy ; Humanities and Social Sciences ; Humans ; Image Processing, Computer-Assisted - methods ; Male ; Middle Aged ; multidisciplinary ; Neoplasm Recurrence, Local - diagnostic imaging ; Neoplasm Recurrence, Local - mortality ; Neoplasm Recurrence, Local - pathology ; Neoplasm Recurrence, Local - therapy ; Neural Networks, Computer ; Prognosis ; Prospective Studies ; Retrospective Studies ; Science ; Science (multidisciplinary) ; Squamous Cell Carcinoma of Head and Neck - diagnostic imaging ; Squamous Cell Carcinoma of Head and Neck - mortality ; Squamous Cell Carcinoma of Head and Neck - pathology ; Squamous Cell Carcinoma of Head and Neck - therapy ; Survival Rate ; Tomography, X-Ray Computed - methods ; Tumor Burden</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.15625-15625, Article 15625</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-313612c87aafd8357ac43c24f4e82a3abb4eb77279afd31a2ce6a1430f0ee7fd3</citedby><cites>FETCH-LOGICAL-c446t-313612c87aafd8357ac43c24f4e82a3abb4eb77279afd31a2ce6a1430f0ee7fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518264/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518264/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32973220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Starke, Sebastian</creatorcontrib><creatorcontrib>Leger, Stefan</creatorcontrib><creatorcontrib>Zwanenburg, Alex</creatorcontrib><creatorcontrib>Leger, Karoline</creatorcontrib><creatorcontrib>Lohaus, Fabian</creatorcontrib><creatorcontrib>Linge, Annett</creatorcontrib><creatorcontrib>Schreiber, Andreas</creatorcontrib><creatorcontrib>Kalinauskaite, Goda</creatorcontrib><creatorcontrib>Tinhofer, Inge</creatorcontrib><creatorcontrib>Guberina, Nika</creatorcontrib><creatorcontrib>Guberina, Maja</creatorcontrib><creatorcontrib>Balermpas, Panagiotis</creatorcontrib><creatorcontrib>von der Grün, Jens</creatorcontrib><creatorcontrib>Ganswindt, Ute</creatorcontrib><creatorcontrib>Belka, Claus</creatorcontrib><creatorcontrib>Peeken, Jan C.</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><creatorcontrib>Boeke, Simon</creatorcontrib><creatorcontrib>Zips, Daniel</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Troost, Esther G. C.</creatorcontrib><creatorcontrib>Krause, Mechthild</creatorcontrib><creatorcontrib>Baumann, Michael</creatorcontrib><creatorcontrib>Löck, Steffen</creatorcontrib><title>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model ( p = 0.001 ). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.</description><subject>692/4028/67/1536</subject><subject>692/4028/67/2321</subject><subject>692/53/2423</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Chemoradiotherapy - mortality</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Head and Neck Neoplasms - diagnostic imaging</subject><subject>Head and Neck Neoplasms - mortality</subject><subject>Head and Neck Neoplasms - pathology</subject><subject>Head and Neck Neoplasms - therapy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Neoplasm Recurrence, Local - diagnostic imaging</subject><subject>Neoplasm Recurrence, Local - mortality</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Neoplasm Recurrence, Local - therapy</subject><subject>Neural Networks, Computer</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Squamous Cell Carcinoma of Head and Neck - diagnostic imaging</subject><subject>Squamous Cell Carcinoma of Head and Neck - mortality</subject><subject>Squamous Cell Carcinoma of Head and Neck - pathology</subject><subject>Squamous Cell Carcinoma of Head and Neck - therapy</subject><subject>Survival Rate</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tumor Burden</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAQtVArQAt_gEPlYy8Be-zEyaVSxUeLhNQLPVuzzmQJJDbYya7495hdQPRSX8bye_Nmnh9jJ1KcSqHqs6Rl2dSFAFEYUWoomj12CEKXBSiAL5_uB-w4pXuRTwmNls0-O1DQmIyIQ7aBC46-5eqCu-DXYZinPngcuKc5bsu0CfEh8S5EHubJhZH4GFoaht6veOj4EBwOwzPHdo3eUcvvCNutpif3wNPTjGOYE3e5hTuMrvdhxCP2tcMh0fFbXbC_V5e357-Lmz-_rs9_3hRO62oqlFSVBFcbxK6tVWnQaeVAd5pqQIXLpaalMWCajCuJ4KhCqZXoBJHJTwv2Y6f7OC9Hah35Kduyj7EfMT7bgL39F_H9nV2FtTWlrKHSWeD7m0AMTzOlyY59evWCnrItC3nPqip1_tAFgx3VxZBSpO5jjBT2NTS7C83m0Ow2NNvkpm-fF_xoeY8oE9SOkDLkVxTtfZhjjij9T_YF54mlUg</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Starke, Sebastian</creator><creator>Leger, Stefan</creator><creator>Zwanenburg, Alex</creator><creator>Leger, Karoline</creator><creator>Lohaus, Fabian</creator><creator>Linge, Annett</creator><creator>Schreiber, Andreas</creator><creator>Kalinauskaite, Goda</creator><creator>Tinhofer, Inge</creator><creator>Guberina, Nika</creator><creator>Guberina, Maja</creator><creator>Balermpas, Panagiotis</creator><creator>von der Grün, Jens</creator><creator>Ganswindt, Ute</creator><creator>Belka, Claus</creator><creator>Peeken, Jan C.</creator><creator>Combs, Stephanie E.</creator><creator>Boeke, Simon</creator><creator>Zips, Daniel</creator><creator>Richter, Christian</creator><creator>Troost, Esther G. C.</creator><creator>Krause, Mechthild</creator><creator>Baumann, Michael</creator><creator>Löck, Steffen</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200924</creationdate><title>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</title><author>Starke, Sebastian ; Leger, Stefan ; Zwanenburg, Alex ; Leger, Karoline ; Lohaus, Fabian ; Linge, Annett ; Schreiber, Andreas ; Kalinauskaite, Goda ; Tinhofer, Inge ; Guberina, Nika ; Guberina, Maja ; Balermpas, Panagiotis ; von der Grün, Jens ; Ganswindt, Ute ; Belka, Claus ; Peeken, Jan C. ; Combs, Stephanie E. ; Boeke, Simon ; Zips, Daniel ; Richter, Christian ; Troost, Esther G. C. ; Krause, Mechthild ; Baumann, Michael ; Löck, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-313612c87aafd8357ac43c24f4e82a3abb4eb77279afd31a2ce6a1430f0ee7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/4028/67/1536</topic><topic>692/4028/67/2321</topic><topic>692/53/2423</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Chemoradiotherapy - mortality</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Head and Neck Neoplasms - diagnostic imaging</topic><topic>Head and Neck Neoplasms - mortality</topic><topic>Head and Neck Neoplasms - pathology</topic><topic>Head and Neck Neoplasms - therapy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Neoplasm Recurrence, Local - diagnostic imaging</topic><topic>Neoplasm Recurrence, Local - mortality</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Neoplasm Recurrence, Local - therapy</topic><topic>Neural Networks, Computer</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Squamous Cell Carcinoma of Head and Neck - diagnostic imaging</topic><topic>Squamous Cell Carcinoma of Head and Neck - mortality</topic><topic>Squamous Cell Carcinoma of Head and Neck - pathology</topic><topic>Squamous Cell Carcinoma of Head and Neck - therapy</topic><topic>Survival Rate</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tumor Burden</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starke, Sebastian</creatorcontrib><creatorcontrib>Leger, Stefan</creatorcontrib><creatorcontrib>Zwanenburg, Alex</creatorcontrib><creatorcontrib>Leger, Karoline</creatorcontrib><creatorcontrib>Lohaus, Fabian</creatorcontrib><creatorcontrib>Linge, Annett</creatorcontrib><creatorcontrib>Schreiber, Andreas</creatorcontrib><creatorcontrib>Kalinauskaite, Goda</creatorcontrib><creatorcontrib>Tinhofer, Inge</creatorcontrib><creatorcontrib>Guberina, Nika</creatorcontrib><creatorcontrib>Guberina, Maja</creatorcontrib><creatorcontrib>Balermpas, Panagiotis</creatorcontrib><creatorcontrib>von der Grün, Jens</creatorcontrib><creatorcontrib>Ganswindt, Ute</creatorcontrib><creatorcontrib>Belka, Claus</creatorcontrib><creatorcontrib>Peeken, Jan C.</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><creatorcontrib>Boeke, Simon</creatorcontrib><creatorcontrib>Zips, Daniel</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Troost, Esther G. C.</creatorcontrib><creatorcontrib>Krause, Mechthild</creatorcontrib><creatorcontrib>Baumann, Michael</creatorcontrib><creatorcontrib>Löck, Steffen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starke, Sebastian</au><au>Leger, Stefan</au><au>Zwanenburg, Alex</au><au>Leger, Karoline</au><au>Lohaus, Fabian</au><au>Linge, Annett</au><au>Schreiber, Andreas</au><au>Kalinauskaite, Goda</au><au>Tinhofer, Inge</au><au>Guberina, Nika</au><au>Guberina, Maja</au><au>Balermpas, Panagiotis</au><au>von der Grün, Jens</au><au>Ganswindt, Ute</au><au>Belka, Claus</au><au>Peeken, Jan C.</au><au>Combs, Stephanie E.</au><au>Boeke, Simon</au><au>Zips, Daniel</au><au>Richter, Christian</au><au>Troost, Esther G. C.</au><au>Krause, Mechthild</au><au>Baumann, Michael</au><au>Löck, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-24</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>15625</spage><epage>15625</epage><pages>15625-15625</pages><artnum>15625</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model ( p = 0.001 ). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32973220</pmid><doi>10.1038/s41598-020-70542-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-09, Vol.10 (1), p.15625-15625, Article 15625
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7518264
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 692/4028/67/1536
692/4028/67/2321
692/53/2423
Adult
Aged
Aged, 80 and over
Chemoradiotherapy - mortality
Female
Follow-Up Studies
Head and Neck Neoplasms - diagnostic imaging
Head and Neck Neoplasms - mortality
Head and Neck Neoplasms - pathology
Head and Neck Neoplasms - therapy
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Male
Middle Aged
multidisciplinary
Neoplasm Recurrence, Local - diagnostic imaging
Neoplasm Recurrence, Local - mortality
Neoplasm Recurrence, Local - pathology
Neoplasm Recurrence, Local - therapy
Neural Networks, Computer
Prognosis
Prospective Studies
Retrospective Studies
Science
Science (multidisciplinary)
Squamous Cell Carcinoma of Head and Neck - diagnostic imaging
Squamous Cell Carcinoma of Head and Neck - mortality
Squamous Cell Carcinoma of Head and Neck - pathology
Squamous Cell Carcinoma of Head and Neck - therapy
Survival Rate
Tomography, X-Ray Computed - methods
Tumor Burden
title 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20and%203D%20convolutional%20neural%20networks%20for%20outcome%20modelling%20of%20locally%20advanced%20head%20and%20neck%20squamous%20cell%20carcinoma&rft.jtitle=Scientific%20reports&rft.au=Starke,%20Sebastian&rft.date=2020-09-24&rft.volume=10&rft.issue=1&rft.spage=15625&rft.epage=15625&rft.pages=15625-15625&rft.artnum=15625&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-70542-9&rft_dat=%3Cproquest_pubme%3E2446665497%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446665497&rft_id=info:pmid/32973220&rfr_iscdi=true