2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma
For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning compute...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-09, Vol.10 (1), p.15625-15625, Article 15625 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15625 |
---|---|
container_issue | 1 |
container_start_page | 15625 |
container_title | Scientific reports |
container_volume | 10 |
creator | Starke, Sebastian Leger, Stefan Zwanenburg, Alex Leger, Karoline Lohaus, Fabian Linge, Annett Schreiber, Andreas Kalinauskaite, Goda Tinhofer, Inge Guberina, Nika Guberina, Maja Balermpas, Panagiotis von der Grün, Jens Ganswindt, Ute Belka, Claus Peeken, Jan C. Combs, Stephanie E. Boeke, Simon Zips, Daniel Richter, Christian Troost, Esther G. C. Krause, Mechthild Baumann, Michael Löck, Steffen |
description | For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model (
p
=
0.001
). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete. |
doi_str_mv | 10.1038/s41598-020-70542-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7518264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446665497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-313612c87aafd8357ac43c24f4e82a3abb4eb77279afd31a2ce6a1430f0ee7fd3</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtVArQAt_gEPlYy8Be-zEyaVSxUeLhNQLPVuzzmQJJDbYya7495hdQPRSX8bye_Nmnh9jJ1KcSqHqs6Rl2dSFAFEYUWoomj12CEKXBSiAL5_uB-w4pXuRTwmNls0-O1DQmIyIQ7aBC46-5eqCu-DXYZinPngcuKc5bsu0CfEh8S5EHubJhZH4GFoaht6veOj4EBwOwzPHdo3eUcvvCNutpif3wNPTjGOYE3e5hTuMrvdhxCP2tcMh0fFbXbC_V5e357-Lmz-_rs9_3hRO62oqlFSVBFcbxK6tVWnQaeVAd5pqQIXLpaalMWCajCuJ4KhCqZXoBJHJTwv2Y6f7OC9Hah35Kduyj7EfMT7bgL39F_H9nV2FtTWlrKHSWeD7m0AMTzOlyY59evWCnrItC3nPqip1_tAFgx3VxZBSpO5jjBT2NTS7C83m0Ow2NNvkpm-fF_xoeY8oE9SOkDLkVxTtfZhjjij9T_YF54mlUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446665497</pqid></control><display><type>article</type><title>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Starke, Sebastian ; Leger, Stefan ; Zwanenburg, Alex ; Leger, Karoline ; Lohaus, Fabian ; Linge, Annett ; Schreiber, Andreas ; Kalinauskaite, Goda ; Tinhofer, Inge ; Guberina, Nika ; Guberina, Maja ; Balermpas, Panagiotis ; von der Grün, Jens ; Ganswindt, Ute ; Belka, Claus ; Peeken, Jan C. ; Combs, Stephanie E. ; Boeke, Simon ; Zips, Daniel ; Richter, Christian ; Troost, Esther G. C. ; Krause, Mechthild ; Baumann, Michael ; Löck, Steffen</creator><creatorcontrib>Starke, Sebastian ; Leger, Stefan ; Zwanenburg, Alex ; Leger, Karoline ; Lohaus, Fabian ; Linge, Annett ; Schreiber, Andreas ; Kalinauskaite, Goda ; Tinhofer, Inge ; Guberina, Nika ; Guberina, Maja ; Balermpas, Panagiotis ; von der Grün, Jens ; Ganswindt, Ute ; Belka, Claus ; Peeken, Jan C. ; Combs, Stephanie E. ; Boeke, Simon ; Zips, Daniel ; Richter, Christian ; Troost, Esther G. C. ; Krause, Mechthild ; Baumann, Michael ; Löck, Steffen</creatorcontrib><description>For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model (
p
=
0.001
). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-70542-9</identifier><identifier>PMID: 32973220</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/4028/67/1536 ; 692/4028/67/2321 ; 692/53/2423 ; Adult ; Aged ; Aged, 80 and over ; Chemoradiotherapy - mortality ; Female ; Follow-Up Studies ; Head and Neck Neoplasms - diagnostic imaging ; Head and Neck Neoplasms - mortality ; Head and Neck Neoplasms - pathology ; Head and Neck Neoplasms - therapy ; Humanities and Social Sciences ; Humans ; Image Processing, Computer-Assisted - methods ; Male ; Middle Aged ; multidisciplinary ; Neoplasm Recurrence, Local - diagnostic imaging ; Neoplasm Recurrence, Local - mortality ; Neoplasm Recurrence, Local - pathology ; Neoplasm Recurrence, Local - therapy ; Neural Networks, Computer ; Prognosis ; Prospective Studies ; Retrospective Studies ; Science ; Science (multidisciplinary) ; Squamous Cell Carcinoma of Head and Neck - diagnostic imaging ; Squamous Cell Carcinoma of Head and Neck - mortality ; Squamous Cell Carcinoma of Head and Neck - pathology ; Squamous Cell Carcinoma of Head and Neck - therapy ; Survival Rate ; Tomography, X-Ray Computed - methods ; Tumor Burden</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.15625-15625, Article 15625</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-313612c87aafd8357ac43c24f4e82a3abb4eb77279afd31a2ce6a1430f0ee7fd3</citedby><cites>FETCH-LOGICAL-c446t-313612c87aafd8357ac43c24f4e82a3abb4eb77279afd31a2ce6a1430f0ee7fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518264/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518264/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32973220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Starke, Sebastian</creatorcontrib><creatorcontrib>Leger, Stefan</creatorcontrib><creatorcontrib>Zwanenburg, Alex</creatorcontrib><creatorcontrib>Leger, Karoline</creatorcontrib><creatorcontrib>Lohaus, Fabian</creatorcontrib><creatorcontrib>Linge, Annett</creatorcontrib><creatorcontrib>Schreiber, Andreas</creatorcontrib><creatorcontrib>Kalinauskaite, Goda</creatorcontrib><creatorcontrib>Tinhofer, Inge</creatorcontrib><creatorcontrib>Guberina, Nika</creatorcontrib><creatorcontrib>Guberina, Maja</creatorcontrib><creatorcontrib>Balermpas, Panagiotis</creatorcontrib><creatorcontrib>von der Grün, Jens</creatorcontrib><creatorcontrib>Ganswindt, Ute</creatorcontrib><creatorcontrib>Belka, Claus</creatorcontrib><creatorcontrib>Peeken, Jan C.</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><creatorcontrib>Boeke, Simon</creatorcontrib><creatorcontrib>Zips, Daniel</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Troost, Esther G. C.</creatorcontrib><creatorcontrib>Krause, Mechthild</creatorcontrib><creatorcontrib>Baumann, Michael</creatorcontrib><creatorcontrib>Löck, Steffen</creatorcontrib><title>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model (
p
=
0.001
). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.</description><subject>692/4028/67/1536</subject><subject>692/4028/67/2321</subject><subject>692/53/2423</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Chemoradiotherapy - mortality</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Head and Neck Neoplasms - diagnostic imaging</subject><subject>Head and Neck Neoplasms - mortality</subject><subject>Head and Neck Neoplasms - pathology</subject><subject>Head and Neck Neoplasms - therapy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Neoplasm Recurrence, Local - diagnostic imaging</subject><subject>Neoplasm Recurrence, Local - mortality</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Neoplasm Recurrence, Local - therapy</subject><subject>Neural Networks, Computer</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Squamous Cell Carcinoma of Head and Neck - diagnostic imaging</subject><subject>Squamous Cell Carcinoma of Head and Neck - mortality</subject><subject>Squamous Cell Carcinoma of Head and Neck - pathology</subject><subject>Squamous Cell Carcinoma of Head and Neck - therapy</subject><subject>Survival Rate</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tumor Burden</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAQtVArQAt_gEPlYy8Be-zEyaVSxUeLhNQLPVuzzmQJJDbYya7495hdQPRSX8bye_Nmnh9jJ1KcSqHqs6Rl2dSFAFEYUWoomj12CEKXBSiAL5_uB-w4pXuRTwmNls0-O1DQmIyIQ7aBC46-5eqCu-DXYZinPngcuKc5bsu0CfEh8S5EHubJhZH4GFoaht6veOj4EBwOwzPHdo3eUcvvCNutpif3wNPTjGOYE3e5hTuMrvdhxCP2tcMh0fFbXbC_V5e357-Lmz-_rs9_3hRO62oqlFSVBFcbxK6tVWnQaeVAd5pqQIXLpaalMWCajCuJ4KhCqZXoBJHJTwv2Y6f7OC9Hah35Kduyj7EfMT7bgL39F_H9nV2FtTWlrKHSWeD7m0AMTzOlyY59evWCnrItC3nPqip1_tAFgx3VxZBSpO5jjBT2NTS7C83m0Ow2NNvkpm-fF_xoeY8oE9SOkDLkVxTtfZhjjij9T_YF54mlUg</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>Starke, Sebastian</creator><creator>Leger, Stefan</creator><creator>Zwanenburg, Alex</creator><creator>Leger, Karoline</creator><creator>Lohaus, Fabian</creator><creator>Linge, Annett</creator><creator>Schreiber, Andreas</creator><creator>Kalinauskaite, Goda</creator><creator>Tinhofer, Inge</creator><creator>Guberina, Nika</creator><creator>Guberina, Maja</creator><creator>Balermpas, Panagiotis</creator><creator>von der Grün, Jens</creator><creator>Ganswindt, Ute</creator><creator>Belka, Claus</creator><creator>Peeken, Jan C.</creator><creator>Combs, Stephanie E.</creator><creator>Boeke, Simon</creator><creator>Zips, Daniel</creator><creator>Richter, Christian</creator><creator>Troost, Esther G. C.</creator><creator>Krause, Mechthild</creator><creator>Baumann, Michael</creator><creator>Löck, Steffen</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200924</creationdate><title>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</title><author>Starke, Sebastian ; Leger, Stefan ; Zwanenburg, Alex ; Leger, Karoline ; Lohaus, Fabian ; Linge, Annett ; Schreiber, Andreas ; Kalinauskaite, Goda ; Tinhofer, Inge ; Guberina, Nika ; Guberina, Maja ; Balermpas, Panagiotis ; von der Grün, Jens ; Ganswindt, Ute ; Belka, Claus ; Peeken, Jan C. ; Combs, Stephanie E. ; Boeke, Simon ; Zips, Daniel ; Richter, Christian ; Troost, Esther G. C. ; Krause, Mechthild ; Baumann, Michael ; Löck, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-313612c87aafd8357ac43c24f4e82a3abb4eb77279afd31a2ce6a1430f0ee7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/4028/67/1536</topic><topic>692/4028/67/2321</topic><topic>692/53/2423</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Chemoradiotherapy - mortality</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Head and Neck Neoplasms - diagnostic imaging</topic><topic>Head and Neck Neoplasms - mortality</topic><topic>Head and Neck Neoplasms - pathology</topic><topic>Head and Neck Neoplasms - therapy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Neoplasm Recurrence, Local - diagnostic imaging</topic><topic>Neoplasm Recurrence, Local - mortality</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Neoplasm Recurrence, Local - therapy</topic><topic>Neural Networks, Computer</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Squamous Cell Carcinoma of Head and Neck - diagnostic imaging</topic><topic>Squamous Cell Carcinoma of Head and Neck - mortality</topic><topic>Squamous Cell Carcinoma of Head and Neck - pathology</topic><topic>Squamous Cell Carcinoma of Head and Neck - therapy</topic><topic>Survival Rate</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tumor Burden</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starke, Sebastian</creatorcontrib><creatorcontrib>Leger, Stefan</creatorcontrib><creatorcontrib>Zwanenburg, Alex</creatorcontrib><creatorcontrib>Leger, Karoline</creatorcontrib><creatorcontrib>Lohaus, Fabian</creatorcontrib><creatorcontrib>Linge, Annett</creatorcontrib><creatorcontrib>Schreiber, Andreas</creatorcontrib><creatorcontrib>Kalinauskaite, Goda</creatorcontrib><creatorcontrib>Tinhofer, Inge</creatorcontrib><creatorcontrib>Guberina, Nika</creatorcontrib><creatorcontrib>Guberina, Maja</creatorcontrib><creatorcontrib>Balermpas, Panagiotis</creatorcontrib><creatorcontrib>von der Grün, Jens</creatorcontrib><creatorcontrib>Ganswindt, Ute</creatorcontrib><creatorcontrib>Belka, Claus</creatorcontrib><creatorcontrib>Peeken, Jan C.</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><creatorcontrib>Boeke, Simon</creatorcontrib><creatorcontrib>Zips, Daniel</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Troost, Esther G. C.</creatorcontrib><creatorcontrib>Krause, Mechthild</creatorcontrib><creatorcontrib>Baumann, Michael</creatorcontrib><creatorcontrib>Löck, Steffen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starke, Sebastian</au><au>Leger, Stefan</au><au>Zwanenburg, Alex</au><au>Leger, Karoline</au><au>Lohaus, Fabian</au><au>Linge, Annett</au><au>Schreiber, Andreas</au><au>Kalinauskaite, Goda</au><au>Tinhofer, Inge</au><au>Guberina, Nika</au><au>Guberina, Maja</au><au>Balermpas, Panagiotis</au><au>von der Grün, Jens</au><au>Ganswindt, Ute</au><au>Belka, Claus</au><au>Peeken, Jan C.</au><au>Combs, Stephanie E.</au><au>Boeke, Simon</au><au>Zips, Daniel</au><au>Richter, Christian</au><au>Troost, Esther G. C.</au><au>Krause, Mechthild</au><au>Baumann, Michael</au><au>Löck, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-24</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>15625</spage><epage>15625</epage><pages>15625-15625</pages><artnum>15625</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning computed tomography images. Based on multicentre cohorts for exploration (206 patients) and independent validation (85 patients), multiple deep learning strategies including training of 3D- and 2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox proportional hazards regression and model performances were assessed by the concordance index (C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant association to LRC on the independent validation cohort. It performed better than the clinical model including the tumour volume (C-index 0.39). Significant differences in LRC were observed between patient groups at low or high risk of tumour recurrence as predicted by the model (
p
=
0.001
). This 3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once follow-up is complete.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32973220</pmid><doi>10.1038/s41598-020-70542-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-09, Vol.10 (1), p.15625-15625, Article 15625 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7518264 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 692/4028/67/1536 692/4028/67/2321 692/53/2423 Adult Aged Aged, 80 and over Chemoradiotherapy - mortality Female Follow-Up Studies Head and Neck Neoplasms - diagnostic imaging Head and Neck Neoplasms - mortality Head and Neck Neoplasms - pathology Head and Neck Neoplasms - therapy Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Male Middle Aged multidisciplinary Neoplasm Recurrence, Local - diagnostic imaging Neoplasm Recurrence, Local - mortality Neoplasm Recurrence, Local - pathology Neoplasm Recurrence, Local - therapy Neural Networks, Computer Prognosis Prospective Studies Retrospective Studies Science Science (multidisciplinary) Squamous Cell Carcinoma of Head and Neck - diagnostic imaging Squamous Cell Carcinoma of Head and Neck - mortality Squamous Cell Carcinoma of Head and Neck - pathology Squamous Cell Carcinoma of Head and Neck - therapy Survival Rate Tomography, X-Ray Computed - methods Tumor Burden |
title | 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20and%203D%20convolutional%20neural%20networks%20for%20outcome%20modelling%20of%20locally%20advanced%20head%20and%20neck%20squamous%20cell%20carcinoma&rft.jtitle=Scientific%20reports&rft.au=Starke,%20Sebastian&rft.date=2020-09-24&rft.volume=10&rft.issue=1&rft.spage=15625&rft.epage=15625&rft.pages=15625-15625&rft.artnum=15625&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-70542-9&rft_dat=%3Cproquest_pubme%3E2446665497%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446665497&rft_id=info:pmid/32973220&rfr_iscdi=true |