Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane
Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipas...
Gespeichert in:
Veröffentlicht in: | Essays in biochemistry 2020-09, Vol.64 (3), p.513-531 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 531 |
---|---|
container_issue | 3 |
container_start_page | 513 |
container_title | Essays in biochemistry |
container_volume | 64 |
creator | Katan, Matilda Cockcroft, Shamshad |
description | Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) and as a primary messenger, each having unique properties. Thus PI(4,5)P2 makes contributions in both signal transduction and cellular processes including actin cytoskeleton dynamics, membrane dynamics and ion channel regulation. Signalling through plasma membrane G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immune receptors all use PI(4,5)P2 as a substrate to make second messengers. Activation of PI3K generates PI(3,4,5)P3 (phosphatidylinositol(3,4,5)trisphosphate), a lipid that recruits a plethora of proteins with pleckstrin homology (PH) domains to the plasma membrane to regulate multiple aspects of cellular function. In contrast, PLC activation results in the hydrolysis of PI(4,5)P2 to generate the second messengers, diacylglycerol (DAG), an activator of protein kinase C and inositol(1,4,5)trisphosphate (IP3/I(1,4,5)P3) which facilitates an increase in intracellular Ca2+. Decreases in PI(4,5)P2 by PLC also impact on functions that are dependent on the intact lipid and therefore endocytosis, actin dynamics and ion channel regulation are subject to control. Spatial organisation of PI(4,5)P2 in nanodomains at the membrane allows for these multiple processes to occur concurrently. |
doi_str_mv | 10.1042/EBC20200041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437404061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-2b4a32eb08a2a6a3cadc218b0ef0d726ffbbb65788114afb1c05f0a8af58e71a3</originalsourceid><addsrcrecordid>eNpVkctLw0AQxhdRbK2evEuOilZnX9ngQdBSH1CoBz0vs8muXUmyNZsW-t-b0lrqaYb5fnzzIuScwi0Fwe7GTyMGDAAEPSB9qoQYUi6zQ9IHULTLU9kjJzF-A_AUlDwmPc4yIRgVfTJ9n4U4n2Hri1Xp6xB9G8pLcSOvjO_qG83eJ4Vf2ibaxC3qvPWhjgm2STuzybzEWGFS2co0WNtTcuSwjPZsGwfk83n8MXodTqYvb6PHyTAXjLdDZgRyZg1kyDBFnmORM5oZsA4KxVLnjDGpVFlGqUBnaA7SAWboZGYVRT4gDxvf-cJUtsht3TZY6nnjK2xWOqDX_5Xaz_RXWGolqeKSdgaXW4Mm_CxsbHXlY27LslsiLKJmgisBAtI1er1B8ybE2Fi3a0NBr1-g917Q0Rf7k-3Yv5vzX0X7gy8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437404061</pqid></control><display><type>article</type><title>Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane</title><source>MEDLINE</source><source>Portland Press Electronic Journals</source><creator>Katan, Matilda ; Cockcroft, Shamshad</creator><creatorcontrib>Katan, Matilda ; Cockcroft, Shamshad</creatorcontrib><description>Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) and as a primary messenger, each having unique properties. Thus PI(4,5)P2 makes contributions in both signal transduction and cellular processes including actin cytoskeleton dynamics, membrane dynamics and ion channel regulation. Signalling through plasma membrane G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immune receptors all use PI(4,5)P2 as a substrate to make second messengers. Activation of PI3K generates PI(3,4,5)P3 (phosphatidylinositol(3,4,5)trisphosphate), a lipid that recruits a plethora of proteins with pleckstrin homology (PH) domains to the plasma membrane to regulate multiple aspects of cellular function. In contrast, PLC activation results in the hydrolysis of PI(4,5)P2 to generate the second messengers, diacylglycerol (DAG), an activator of protein kinase C and inositol(1,4,5)trisphosphate (IP3/I(1,4,5)P3) which facilitates an increase in intracellular Ca2+. Decreases in PI(4,5)P2 by PLC also impact on functions that are dependent on the intact lipid and therefore endocytosis, actin dynamics and ion channel regulation are subject to control. Spatial organisation of PI(4,5)P2 in nanodomains at the membrane allows for these multiple processes to occur concurrently.</description><identifier>ISSN: 0071-1365</identifier><identifier>EISSN: 1744-1358</identifier><identifier>DOI: 10.1042/EBC20200041</identifier><identifier>PMID: 32844214</identifier><language>eng</language><publisher>England: Portland Press Ltd</publisher><subject>Actin Cytoskeleton - metabolism ; Animals ; Cell Membrane - metabolism ; Diglycerides - metabolism ; Endocytosis - physiology ; Exocytosis - physiology ; Glycerophospholipids - metabolism ; Humans ; Hydrolysis ; Inositol 1,4,5-Trisphosphate - metabolism ; Ion Channels - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphatidylinositol 4,5-Diphosphate - chemistry ; Phosphatidylinositol 4,5-Diphosphate - metabolism ; Review ; Signal Transduction - physiology ; Signaling ; Type C Phospholipases - metabolism</subject><ispartof>Essays in biochemistry, 2020-09, Vol.64 (3), p.513-531</ispartof><rights>2020 The Author(s).</rights><rights>2020 The Author(s). 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-2b4a32eb08a2a6a3cadc218b0ef0d726ffbbb65788114afb1c05f0a8af58e71a3</citedby><cites>FETCH-LOGICAL-c423t-2b4a32eb08a2a6a3cadc218b0ef0d726ffbbb65788114afb1c05f0a8af58e71a3</cites><orcidid>0000-0002-5731-476X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3253,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32844214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katan, Matilda</creatorcontrib><creatorcontrib>Cockcroft, Shamshad</creatorcontrib><title>Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane</title><title>Essays in biochemistry</title><addtitle>Essays Biochem</addtitle><description>Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) and as a primary messenger, each having unique properties. Thus PI(4,5)P2 makes contributions in both signal transduction and cellular processes including actin cytoskeleton dynamics, membrane dynamics and ion channel regulation. Signalling through plasma membrane G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immune receptors all use PI(4,5)P2 as a substrate to make second messengers. Activation of PI3K generates PI(3,4,5)P3 (phosphatidylinositol(3,4,5)trisphosphate), a lipid that recruits a plethora of proteins with pleckstrin homology (PH) domains to the plasma membrane to regulate multiple aspects of cellular function. In contrast, PLC activation results in the hydrolysis of PI(4,5)P2 to generate the second messengers, diacylglycerol (DAG), an activator of protein kinase C and inositol(1,4,5)trisphosphate (IP3/I(1,4,5)P3) which facilitates an increase in intracellular Ca2+. Decreases in PI(4,5)P2 by PLC also impact on functions that are dependent on the intact lipid and therefore endocytosis, actin dynamics and ion channel regulation are subject to control. Spatial organisation of PI(4,5)P2 in nanodomains at the membrane allows for these multiple processes to occur concurrently.</description><subject>Actin Cytoskeleton - metabolism</subject><subject>Animals</subject><subject>Cell Membrane - metabolism</subject><subject>Diglycerides - metabolism</subject><subject>Endocytosis - physiology</subject><subject>Exocytosis - physiology</subject><subject>Glycerophospholipids - metabolism</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Inositol 1,4,5-Trisphosphate - metabolism</subject><subject>Ion Channels - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphatidylinositol 4,5-Diphosphate - chemistry</subject><subject>Phosphatidylinositol 4,5-Diphosphate - metabolism</subject><subject>Review</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><subject>Type C Phospholipases - metabolism</subject><issn>0071-1365</issn><issn>1744-1358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctLw0AQxhdRbK2evEuOilZnX9ngQdBSH1CoBz0vs8muXUmyNZsW-t-b0lrqaYb5fnzzIuScwi0Fwe7GTyMGDAAEPSB9qoQYUi6zQ9IHULTLU9kjJzF-A_AUlDwmPc4yIRgVfTJ9n4U4n2Hri1Xp6xB9G8pLcSOvjO_qG83eJ4Vf2ibaxC3qvPWhjgm2STuzybzEWGFS2co0WNtTcuSwjPZsGwfk83n8MXodTqYvb6PHyTAXjLdDZgRyZg1kyDBFnmORM5oZsA4KxVLnjDGpVFlGqUBnaA7SAWboZGYVRT4gDxvf-cJUtsht3TZY6nnjK2xWOqDX_5Xaz_RXWGolqeKSdgaXW4Mm_CxsbHXlY27LslsiLKJmgisBAtI1er1B8ybE2Fi3a0NBr1-g917Q0Rf7k-3Yv5vzX0X7gy8</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Katan, Matilda</creator><creator>Cockcroft, Shamshad</creator><general>Portland Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5731-476X</orcidid></search><sort><creationdate>20200923</creationdate><title>Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane</title><author>Katan, Matilda ; Cockcroft, Shamshad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-2b4a32eb08a2a6a3cadc218b0ef0d726ffbbb65788114afb1c05f0a8af58e71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actin Cytoskeleton - metabolism</topic><topic>Animals</topic><topic>Cell Membrane - metabolism</topic><topic>Diglycerides - metabolism</topic><topic>Endocytosis - physiology</topic><topic>Exocytosis - physiology</topic><topic>Glycerophospholipids - metabolism</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Inositol 1,4,5-Trisphosphate - metabolism</topic><topic>Ion Channels - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphatidylinositol 4,5-Diphosphate - chemistry</topic><topic>Phosphatidylinositol 4,5-Diphosphate - metabolism</topic><topic>Review</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><topic>Type C Phospholipases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katan, Matilda</creatorcontrib><creatorcontrib>Cockcroft, Shamshad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Essays in biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katan, Matilda</au><au>Cockcroft, Shamshad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane</atitle><jtitle>Essays in biochemistry</jtitle><addtitle>Essays Biochem</addtitle><date>2020-09-23</date><risdate>2020</risdate><volume>64</volume><issue>3</issue><spage>513</spage><epage>531</epage><pages>513-531</pages><issn>0071-1365</issn><eissn>1744-1358</eissn><abstract>Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) and as a primary messenger, each having unique properties. Thus PI(4,5)P2 makes contributions in both signal transduction and cellular processes including actin cytoskeleton dynamics, membrane dynamics and ion channel regulation. Signalling through plasma membrane G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immune receptors all use PI(4,5)P2 as a substrate to make second messengers. Activation of PI3K generates PI(3,4,5)P3 (phosphatidylinositol(3,4,5)trisphosphate), a lipid that recruits a plethora of proteins with pleckstrin homology (PH) domains to the plasma membrane to regulate multiple aspects of cellular function. In contrast, PLC activation results in the hydrolysis of PI(4,5)P2 to generate the second messengers, diacylglycerol (DAG), an activator of protein kinase C and inositol(1,4,5)trisphosphate (IP3/I(1,4,5)P3) which facilitates an increase in intracellular Ca2+. Decreases in PI(4,5)P2 by PLC also impact on functions that are dependent on the intact lipid and therefore endocytosis, actin dynamics and ion channel regulation are subject to control. Spatial organisation of PI(4,5)P2 in nanodomains at the membrane allows for these multiple processes to occur concurrently.</abstract><cop>England</cop><pub>Portland Press Ltd</pub><pmid>32844214</pmid><doi>10.1042/EBC20200041</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5731-476X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0071-1365 |
ispartof | Essays in biochemistry, 2020-09, Vol.64 (3), p.513-531 |
issn | 0071-1365 1744-1358 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517351 |
source | MEDLINE; Portland Press Electronic Journals |
subjects | Actin Cytoskeleton - metabolism Animals Cell Membrane - metabolism Diglycerides - metabolism Endocytosis - physiology Exocytosis - physiology Glycerophospholipids - metabolism Humans Hydrolysis Inositol 1,4,5-Trisphosphate - metabolism Ion Channels - metabolism Phosphatidylinositol 3-Kinases - metabolism Phosphatidylinositol 4,5-Diphosphate - chemistry Phosphatidylinositol 4,5-Diphosphate - metabolism Review Signal Transduction - physiology Signaling Type C Phospholipases - metabolism |
title | Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphatidylinositol(4,5)bisphosphate:%20diverse%20functions%20at%20the%20plasma%20membrane&rft.jtitle=Essays%20in%20biochemistry&rft.au=Katan,%20Matilda&rft.date=2020-09-23&rft.volume=64&rft.issue=3&rft.spage=513&rft.epage=531&rft.pages=513-531&rft.issn=0071-1365&rft.eissn=1744-1358&rft_id=info:doi/10.1042/EBC20200041&rft_dat=%3Cproquest_pubme%3E2437404061%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437404061&rft_id=info:pmid/32844214&rfr_iscdi=true |