Finding a Hadamard Matrix by Simulated Quantum Annealing

Hard problems have recently become an important issue in computing. Various methods, including a heuristic approach that is inspired by physical phenomena, are being explored. In this paper, we propose the use of simulated quantum annealing (SQA) to find a Hadamard matrix, which is itself a hard pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2018-02, Vol.20 (2), p.141
1. Verfasser: Suksmono, Andriyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 141
container_title Entropy (Basel, Switzerland)
container_volume 20
creator Suksmono, Andriyan
description Hard problems have recently become an important issue in computing. Various methods, including a heuristic approach that is inspired by physical phenomena, are being explored. In this paper, we propose the use of simulated quantum annealing (SQA) to find a Hadamard matrix, which is itself a hard problem. We reformulate the problem as an energy minimization of spin vectors connected by a complete graph. The computation is conducted based on a path-integral Monte-Carlo (PIMC) SQA of the spin vector system, with an applied transverse magnetic field whose strength is decreased over time. In the numerical experiments, the proposed method is employed to find low-order Hadamard matrices, including the ones that cannot be constructed trivially by the Sylvester method. The scaling property of the method and the measurement of residual energy after a sufficiently large number of iterations show that SQA outperforms simulated annealing (SA) in solving this hard problem.
doi_str_mv 10.3390/e20020141
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466767198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-4f930a2c707dcaa52b60ff856e8332b8d8ae4d6b52f052a607b980e291fafb333</originalsourceid><addsrcrecordid>eNpdkVFLwzAQx4Mobk4f_AYFX_RheknaNH0RxnBOUETU53BtktnRprNpxX17MzaG-nR33O_-_O-OkHMK15xncGMYAAMa0wMypJBl45gDHP7KB-TE-2WAOKPimAw4ZyIJxZDIWel06RYRRnPUWGOroyfs2vI7ytfRa1n3FXZGRy89uq6vo4lzBqswcEqOLFbenO3iiLzP7t6m8_Hj8_3DdPI4LriEbhzbjAOyIoVUF4gJywVYKxNhZDCRSy3RxFrkCbOQMBSQ5pkEwzJq0eac8xG53equ-rw2ujCua7FSq7YMXteqwVL97bjyQy2aL5UmlAmeBIHLnUDbfPbGd6oufWGqCp1peq9YLEQqUprJgF78Q5dN37qwntqcNwWWso2jqy1VtI33rbF7MxTU5h9q_w_-AwMUefY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014702723</pqid></control><display><type>article</type><title>Finding a Hadamard Matrix by Simulated Quantum Annealing</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Suksmono, Andriyan</creator><creatorcontrib>Suksmono, Andriyan</creatorcontrib><description>Hard problems have recently become an important issue in computing. Various methods, including a heuristic approach that is inspired by physical phenomena, are being explored. In this paper, we propose the use of simulated quantum annealing (SQA) to find a Hadamard matrix, which is itself a hard problem. We reformulate the problem as an energy minimization of spin vectors connected by a complete graph. The computation is conducted based on a path-integral Monte-Carlo (PIMC) SQA of the spin vector system, with an applied transverse magnetic field whose strength is decreased over time. In the numerical experiments, the proposed method is employed to find low-order Hadamard matrices, including the ones that cannot be constructed trivially by the Sylvester method. The scaling property of the method and the measurement of residual energy after a sufficiently large number of iterations show that SQA outperforms simulated annealing (SA) in solving this hard problem.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e20020141</identifier><identifier>PMID: 33265232</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Computer simulation ; Energy conservation ; Energy measurement ; Heuristic methods ; Monte Carlo simulation ; Residual energy ; Simulated annealing</subject><ispartof>Entropy (Basel, Switzerland), 2018-02, Vol.20 (2), p.141</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2018 by the author. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-4f930a2c707dcaa52b60ff856e8332b8d8ae4d6b52f052a607b980e291fafb333</citedby><cites>FETCH-LOGICAL-c380t-4f930a2c707dcaa52b60ff856e8332b8d8ae4d6b52f052a607b980e291fafb333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512635/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512635/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Suksmono, Andriyan</creatorcontrib><title>Finding a Hadamard Matrix by Simulated Quantum Annealing</title><title>Entropy (Basel, Switzerland)</title><description>Hard problems have recently become an important issue in computing. Various methods, including a heuristic approach that is inspired by physical phenomena, are being explored. In this paper, we propose the use of simulated quantum annealing (SQA) to find a Hadamard matrix, which is itself a hard problem. We reformulate the problem as an energy minimization of spin vectors connected by a complete graph. The computation is conducted based on a path-integral Monte-Carlo (PIMC) SQA of the spin vector system, with an applied transverse magnetic field whose strength is decreased over time. In the numerical experiments, the proposed method is employed to find low-order Hadamard matrices, including the ones that cannot be constructed trivially by the Sylvester method. The scaling property of the method and the measurement of residual energy after a sufficiently large number of iterations show that SQA outperforms simulated annealing (SA) in solving this hard problem.</description><subject>Computer simulation</subject><subject>Energy conservation</subject><subject>Energy measurement</subject><subject>Heuristic methods</subject><subject>Monte Carlo simulation</subject><subject>Residual energy</subject><subject>Simulated annealing</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFLwzAQx4Mobk4f_AYFX_RheknaNH0RxnBOUETU53BtktnRprNpxX17MzaG-nR33O_-_O-OkHMK15xncGMYAAMa0wMypJBl45gDHP7KB-TE-2WAOKPimAw4ZyIJxZDIWel06RYRRnPUWGOroyfs2vI7ytfRa1n3FXZGRy89uq6vo4lzBqswcEqOLFbenO3iiLzP7t6m8_Hj8_3DdPI4LriEbhzbjAOyIoVUF4gJywVYKxNhZDCRSy3RxFrkCbOQMBSQ5pkEwzJq0eac8xG53equ-rw2ujCua7FSq7YMXteqwVL97bjyQy2aL5UmlAmeBIHLnUDbfPbGd6oufWGqCp1peq9YLEQqUprJgF78Q5dN37qwntqcNwWWso2jqy1VtI33rbF7MxTU5h9q_w_-AwMUefY</recordid><startdate>20180222</startdate><enddate>20180222</enddate><creator>Suksmono, Andriyan</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180222</creationdate><title>Finding a Hadamard Matrix by Simulated Quantum Annealing</title><author>Suksmono, Andriyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-4f930a2c707dcaa52b60ff856e8332b8d8ae4d6b52f052a607b980e291fafb333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Energy conservation</topic><topic>Energy measurement</topic><topic>Heuristic methods</topic><topic>Monte Carlo simulation</topic><topic>Residual energy</topic><topic>Simulated annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suksmono, Andriyan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suksmono, Andriyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding a Hadamard Matrix by Simulated Quantum Annealing</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2018-02-22</date><risdate>2018</risdate><volume>20</volume><issue>2</issue><spage>141</spage><pages>141-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Hard problems have recently become an important issue in computing. Various methods, including a heuristic approach that is inspired by physical phenomena, are being explored. In this paper, we propose the use of simulated quantum annealing (SQA) to find a Hadamard matrix, which is itself a hard problem. We reformulate the problem as an energy minimization of spin vectors connected by a complete graph. The computation is conducted based on a path-integral Monte-Carlo (PIMC) SQA of the spin vector system, with an applied transverse magnetic field whose strength is decreased over time. In the numerical experiments, the proposed method is employed to find low-order Hadamard matrices, including the ones that cannot be constructed trivially by the Sylvester method. The scaling property of the method and the measurement of residual energy after a sufficiently large number of iterations show that SQA outperforms simulated annealing (SA) in solving this hard problem.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33265232</pmid><doi>10.3390/e20020141</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2018-02, Vol.20 (2), p.141
issn 1099-4300
1099-4300
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512635
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library
subjects Computer simulation
Energy conservation
Energy measurement
Heuristic methods
Monte Carlo simulation
Residual energy
Simulated annealing
title Finding a Hadamard Matrix by Simulated Quantum Annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20a%20Hadamard%20Matrix%20by%20Simulated%20Quantum%20Annealing&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Suksmono,%20Andriyan&rft.date=2018-02-22&rft.volume=20&rft.issue=2&rft.spage=141&rft.pages=141-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e20020141&rft_dat=%3Cproquest_pubme%3E2466767198%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014702723&rft_id=info:pmid/33265232&rfr_iscdi=true