Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells

Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mBio 2020-09, Vol.11 (5)
Hauptverfasser: Sepe, Ludovico P., Hartl, Kimberly, Iftekhar, Amina, Berger, Hilmar, Kumar, Naveen, Goosmann, Christian, Chopra, Sascha, Schmidt, Sven Christian, Gurumurthy, Rajendra Kumar, Meyer, Thomas F., Boccellato, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title mBio
container_volume 11
creator Sepe, Ludovico P.
Hartl, Kimberly
Iftekhar, Amina
Berger, Hilmar
Kumar, Naveen
Goosmann, Christian
Chopra, Sascha
Schmidt, Sven Christian
Gurumurthy, Rajendra Kumar
Meyer, Thomas F.
Boccellato, Francesco
description Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation. Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between
doi_str_mv 10.1128/mBio.01911-20
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445425258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-cc07d2e4ead05b7634aacaf3c1534c89dc25cc260864c7272d4e3e0a864395a3</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaJYqT16z9HL1nzux0WopbaFggULHsM0m7WR7KYmW7H_3l1bBIfATGbevGTmIXRHyZhSlj_UT9aPCS0oTRi5QDeMSpJkktLLPk67LGXFAI1i_CCdcU5zTq7RgLMi5YSkN-htbhrf-m-r8ayqjG6xr_AruNo3xjnAawjQHvc7iyd42fQA6xvcncWhhgavg60hHPEcnNs6KEsT8LRrjLfoqgIXzejsh2jzPNtMF8nqZb6cTlaJ5qloE61JVjIjDJREbrOUCwANFddUcqHzotRMas1SkqdCZyxjpTDcEOiuvJDAh-jxRLs_bGtTatO0AZzan76lPFj1v9LYnXr3X6pbEpOSdQT3Z4LgPw8mtqq2UfejN8YfomJCSMEkk3kHTU5QHXyMwVR_z1CiejlUL4f6lUMxwn8AcnV9Bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445425258</pqid></control><display><type>article</type><title>Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells</title><source>American Society for Microbiology</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Sepe, Ludovico P. ; Hartl, Kimberly ; Iftekhar, Amina ; Berger, Hilmar ; Kumar, Naveen ; Goosmann, Christian ; Chopra, Sascha ; Schmidt, Sven Christian ; Gurumurthy, Rajendra Kumar ; Meyer, Thomas F. ; Boccellato, Francesco</creator><contributor>McClane, Bruce A.</contributor><creatorcontrib>Sepe, Ludovico P. ; Hartl, Kimberly ; Iftekhar, Amina ; Berger, Hilmar ; Kumar, Naveen ; Goosmann, Christian ; Chopra, Sascha ; Schmidt, Sven Christian ; Gurumurthy, Rajendra Kumar ; Meyer, Thomas F. ; Boccellato, Francesco ; McClane, Bruce A.</creatorcontrib><description>Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation. Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between Salmonella infection and GBC. IMPORTANCE Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation.</description><identifier>ISSN: 2161-2129</identifier><identifier>EISSN: 2150-7511</identifier><identifier>DOI: 10.1128/mBio.01911-20</identifier><identifier>PMID: 32963006</identifier><language>eng</language><publisher>1752 N St., N.W., Washington, DC: American Society for Microbiology</publisher><subject>Host-Microbe Biology</subject><ispartof>mBio, 2020-09, Vol.11 (5)</ispartof><rights>Copyright © 2020 Sepe, Hartl et al. 2020 Sepe, Hartl et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-cc07d2e4ead05b7634aacaf3c1534c89dc25cc260864c7272d4e3e0a864395a3</citedby><cites>FETCH-LOGICAL-c364t-cc07d2e4ead05b7634aacaf3c1534c89dc25cc260864c7272d4e3e0a864395a3</cites><orcidid>0000-0001-6479-8080 ; 0000-0002-0001-5590 ; 0000-0002-2965-0512 ; 0000-0002-6304-4946 ; 0000-0002-6120-8679 ; 0000-0001-6013-7154 ; 0000-0003-3291-9671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512552/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512552/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,3175,27905,27906,53772,53774</link.rule.ids></links><search><contributor>McClane, Bruce A.</contributor><creatorcontrib>Sepe, Ludovico P.</creatorcontrib><creatorcontrib>Hartl, Kimberly</creatorcontrib><creatorcontrib>Iftekhar, Amina</creatorcontrib><creatorcontrib>Berger, Hilmar</creatorcontrib><creatorcontrib>Kumar, Naveen</creatorcontrib><creatorcontrib>Goosmann, Christian</creatorcontrib><creatorcontrib>Chopra, Sascha</creatorcontrib><creatorcontrib>Schmidt, Sven Christian</creatorcontrib><creatorcontrib>Gurumurthy, Rajendra Kumar</creatorcontrib><creatorcontrib>Meyer, Thomas F.</creatorcontrib><creatorcontrib>Boccellato, Francesco</creatorcontrib><title>Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells</title><title>mBio</title><description>Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation. Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between Salmonella infection and GBC. IMPORTANCE Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation.</description><subject>Host-Microbe Biology</subject><issn>2161-2129</issn><issn>2150-7511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEQDaJYqT16z9HL1nzux0WopbaFggULHsM0m7WR7KYmW7H_3l1bBIfATGbevGTmIXRHyZhSlj_UT9aPCS0oTRi5QDeMSpJkktLLPk67LGXFAI1i_CCdcU5zTq7RgLMi5YSkN-htbhrf-m-r8ayqjG6xr_AruNo3xjnAawjQHvc7iyd42fQA6xvcncWhhgavg60hHPEcnNs6KEsT8LRrjLfoqgIXzejsh2jzPNtMF8nqZb6cTlaJ5qloE61JVjIjDJREbrOUCwANFddUcqHzotRMas1SkqdCZyxjpTDcEOiuvJDAh-jxRLs_bGtTatO0AZzan76lPFj1v9LYnXr3X6pbEpOSdQT3Z4LgPw8mtqq2UfejN8YfomJCSMEkk3kHTU5QHXyMwVR_z1CiejlUL4f6lUMxwn8AcnV9Bg</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Sepe, Ludovico P.</creator><creator>Hartl, Kimberly</creator><creator>Iftekhar, Amina</creator><creator>Berger, Hilmar</creator><creator>Kumar, Naveen</creator><creator>Goosmann, Christian</creator><creator>Chopra, Sascha</creator><creator>Schmidt, Sven Christian</creator><creator>Gurumurthy, Rajendra Kumar</creator><creator>Meyer, Thomas F.</creator><creator>Boccellato, Francesco</creator><general>American Society for Microbiology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6479-8080</orcidid><orcidid>https://orcid.org/0000-0002-0001-5590</orcidid><orcidid>https://orcid.org/0000-0002-2965-0512</orcidid><orcidid>https://orcid.org/0000-0002-6304-4946</orcidid><orcidid>https://orcid.org/0000-0002-6120-8679</orcidid><orcidid>https://orcid.org/0000-0001-6013-7154</orcidid><orcidid>https://orcid.org/0000-0003-3291-9671</orcidid></search><sort><creationdate>20200922</creationdate><title>Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells</title><author>Sepe, Ludovico P. ; Hartl, Kimberly ; Iftekhar, Amina ; Berger, Hilmar ; Kumar, Naveen ; Goosmann, Christian ; Chopra, Sascha ; Schmidt, Sven Christian ; Gurumurthy, Rajendra Kumar ; Meyer, Thomas F. ; Boccellato, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-cc07d2e4ead05b7634aacaf3c1534c89dc25cc260864c7272d4e3e0a864395a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Host-Microbe Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sepe, Ludovico P.</creatorcontrib><creatorcontrib>Hartl, Kimberly</creatorcontrib><creatorcontrib>Iftekhar, Amina</creatorcontrib><creatorcontrib>Berger, Hilmar</creatorcontrib><creatorcontrib>Kumar, Naveen</creatorcontrib><creatorcontrib>Goosmann, Christian</creatorcontrib><creatorcontrib>Chopra, Sascha</creatorcontrib><creatorcontrib>Schmidt, Sven Christian</creatorcontrib><creatorcontrib>Gurumurthy, Rajendra Kumar</creatorcontrib><creatorcontrib>Meyer, Thomas F.</creatorcontrib><creatorcontrib>Boccellato, Francesco</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>mBio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sepe, Ludovico P.</au><au>Hartl, Kimberly</au><au>Iftekhar, Amina</au><au>Berger, Hilmar</au><au>Kumar, Naveen</au><au>Goosmann, Christian</au><au>Chopra, Sascha</au><au>Schmidt, Sven Christian</au><au>Gurumurthy, Rajendra Kumar</au><au>Meyer, Thomas F.</au><au>Boccellato, Francesco</au><au>McClane, Bruce A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells</atitle><jtitle>mBio</jtitle><date>2020-09-22</date><risdate>2020</risdate><volume>11</volume><issue>5</issue><issn>2161-2129</issn><eissn>2150-7511</eissn><abstract>Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation. Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between Salmonella infection and GBC. IMPORTANCE Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation.</abstract><cop>1752 N St., N.W., Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>32963006</pmid><doi>10.1128/mBio.01911-20</doi><orcidid>https://orcid.org/0000-0001-6479-8080</orcidid><orcidid>https://orcid.org/0000-0002-0001-5590</orcidid><orcidid>https://orcid.org/0000-0002-2965-0512</orcidid><orcidid>https://orcid.org/0000-0002-6304-4946</orcidid><orcidid>https://orcid.org/0000-0002-6120-8679</orcidid><orcidid>https://orcid.org/0000-0001-6013-7154</orcidid><orcidid>https://orcid.org/0000-0003-3291-9671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2161-2129
ispartof mBio, 2020-09, Vol.11 (5)
issn 2161-2129
2150-7511
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7512552
source American Society for Microbiology; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Host-Microbe Biology
title Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genotoxic%20Effect%20of%20Salmonella%20Paratyphi%20A%20Infection%20on%20Human%20Primary%20Gallbladder%20Cells&rft.jtitle=mBio&rft.au=Sepe,%20Ludovico%20P.&rft.date=2020-09-22&rft.volume=11&rft.issue=5&rft.issn=2161-2129&rft.eissn=2150-7511&rft_id=info:doi/10.1128/mBio.01911-20&rft_dat=%3Cproquest_pubme%3E2445425258%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445425258&rft_id=info:pmid/32963006&rfr_iscdi=true