3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks
Purpose The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply...
Gespeichert in:
Veröffentlicht in: | Cardiovascular engineering and technology 2020-10, Vol.11 (5), p.576-586 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 5 |
container_start_page | 576 |
container_title | Cardiovascular engineering and technology |
container_volume | 11 |
creator | Fantazzini, Alice Esposito, Mario Finotello, Alice Auricchio, Ferdinando Pane, Bianca Basso, Curzio Spinella, Giovanni Conti, Michele |
description | Purpose
The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence.
Methods
A first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence.
Results
The coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation.
Conclusion
The achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm. |
doi_str_mv | 10.1007/s13239-020-00481-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7511465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450324322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e6348f248c79129189ccb9f96734b84400723b9dc6acc303c12e2421c99176763</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtapWgCh_oAdkqZdeAv5KYl8qrZZ-SdAeoFVvVuJ1giGxt3YMWn49sywsbQ_4MqN5b55n5iH0jpIjSkh9nChnXBWEkYIQIWlx9wrtUVmpQhAlX29z-XsXHaR0ReBxpohgO2iXs1pyysUeWvETPMtTGJvJGXxu-9H6CfLgcejwLMR1eR7GZZ7sAl-EMfSxWV6u8Mz37ikHvHXe-R6f5WFyxS9nbzE7gbq_CUNeqzUD_m5zfAjTbYjX6S160zVDsgePcR_9_PzpYv61OP3x5dt8dloYUYupsBUXsmNCmlpRpqhUxrSqU1XNRSuFgFsw3qqFqRpjOOGGMssEo0YpWld1xffRx43uMrejXRjYD8bQy-jGJq50aJz-F_HuUvfhRtclpaIqQeDDo0AMf7JNkx5dMnYYGm9DTpoJDlbIspRAff8f9SrkCMuvWSXcX3DGgMU2LBNDStF222Eo0Wtz9cZcDebqB3P1HTQd_r3GtuXJSiDwDSEB5Hsbn_9-QfYeMo6wuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450324322</pqid></control><display><type>article</type><title>3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Fantazzini, Alice ; Esposito, Mario ; Finotello, Alice ; Auricchio, Ferdinando ; Pane, Bianca ; Basso, Curzio ; Spinella, Giovanni ; Conti, Michele</creator><creatorcontrib>Fantazzini, Alice ; Esposito, Mario ; Finotello, Alice ; Auricchio, Ferdinando ; Pane, Bianca ; Basso, Curzio ; Spinella, Giovanni ; Conti, Michele</creatorcontrib><description>Purpose
The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence.
Methods
A first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence.
Results
The coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation.
Conclusion
The achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm.</description><identifier>ISSN: 1869-408X</identifier><identifier>EISSN: 1869-4098</identifier><identifier>DOI: 10.1007/s13239-020-00481-z</identifier><identifier>PMID: 32783134</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aged ; Aged, 80 and over ; Angiography ; Aorta ; Aorta, Abdominal - diagnostic imaging ; Aortic Aneurysm, Abdominal - diagnostic imaging ; Aortography ; Arteries ; Artificial neural networks ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cardiology ; Coherence ; Computed tomography ; Computed Tomography Angiography ; Coronary vessels ; Deep Learning ; Engineering ; Female ; Ground truth ; Humans ; Imaging, Three-Dimensional ; Male ; Medical imaging ; Middle Aged ; Neural networks ; Original ; Original Article ; Pipelines ; Predictive Value of Tests ; Radiographic Image Interpretation, Computer-Assisted ; Retrospective Studies ; Segmentation ; Segments</subject><ispartof>Cardiovascular engineering and technology, 2020-10, Vol.11 (5), p.576-586</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e6348f248c79129189ccb9f96734b84400723b9dc6acc303c12e2421c99176763</citedby><cites>FETCH-LOGICAL-c474t-e6348f248c79129189ccb9f96734b84400723b9dc6acc303c12e2421c99176763</cites><orcidid>0000-0001-5688-9003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13239-020-00481-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13239-020-00481-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32783134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fantazzini, Alice</creatorcontrib><creatorcontrib>Esposito, Mario</creatorcontrib><creatorcontrib>Finotello, Alice</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Pane, Bianca</creatorcontrib><creatorcontrib>Basso, Curzio</creatorcontrib><creatorcontrib>Spinella, Giovanni</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><title>3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks</title><title>Cardiovascular engineering and technology</title><addtitle>Cardiovasc Eng Tech</addtitle><addtitle>Cardiovasc Eng Technol</addtitle><description>Purpose
The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence.
Methods
A first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence.
Results
The coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation.
Conclusion
The achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Aorta, Abdominal - diagnostic imaging</subject><subject>Aortic Aneurysm, Abdominal - diagnostic imaging</subject><subject>Aortography</subject><subject>Arteries</subject><subject>Artificial neural networks</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cardiology</subject><subject>Coherence</subject><subject>Computed tomography</subject><subject>Computed Tomography Angiography</subject><subject>Coronary vessels</subject><subject>Deep Learning</subject><subject>Engineering</subject><subject>Female</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Original</subject><subject>Original Article</subject><subject>Pipelines</subject><subject>Predictive Value of Tests</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Retrospective Studies</subject><subject>Segmentation</subject><subject>Segments</subject><issn>1869-408X</issn><issn>1869-4098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAQtapWgCh_oAdkqZdeAv5KYl8qrZZ-SdAeoFVvVuJ1giGxt3YMWn49sywsbQ_4MqN5b55n5iH0jpIjSkh9nChnXBWEkYIQIWlx9wrtUVmpQhAlX29z-XsXHaR0ReBxpohgO2iXs1pyysUeWvETPMtTGJvJGXxu-9H6CfLgcejwLMR1eR7GZZ7sAl-EMfSxWV6u8Mz37ikHvHXe-R6f5WFyxS9nbzE7gbq_CUNeqzUD_m5zfAjTbYjX6S160zVDsgePcR_9_PzpYv61OP3x5dt8dloYUYupsBUXsmNCmlpRpqhUxrSqU1XNRSuFgFsw3qqFqRpjOOGGMssEo0YpWld1xffRx43uMrejXRjYD8bQy-jGJq50aJz-F_HuUvfhRtclpaIqQeDDo0AMf7JNkx5dMnYYGm9DTpoJDlbIspRAff8f9SrkCMuvWSXcX3DGgMU2LBNDStF222Eo0Wtz9cZcDebqB3P1HTQd_r3GtuXJSiDwDSEB5Hsbn_9-QfYeMo6wuQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Fantazzini, Alice</creator><creator>Esposito, Mario</creator><creator>Finotello, Alice</creator><creator>Auricchio, Ferdinando</creator><creator>Pane, Bianca</creator><creator>Basso, Curzio</creator><creator>Spinella, Giovanni</creator><creator>Conti, Michele</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5688-9003</orcidid></search><sort><creationdate>20201001</creationdate><title>3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks</title><author>Fantazzini, Alice ; Esposito, Mario ; Finotello, Alice ; Auricchio, Ferdinando ; Pane, Bianca ; Basso, Curzio ; Spinella, Giovanni ; Conti, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e6348f248c79129189ccb9f96734b84400723b9dc6acc303c12e2421c99176763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Aorta, Abdominal - diagnostic imaging</topic><topic>Aortic Aneurysm, Abdominal - diagnostic imaging</topic><topic>Aortography</topic><topic>Arteries</topic><topic>Artificial neural networks</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cardiology</topic><topic>Coherence</topic><topic>Computed tomography</topic><topic>Computed Tomography Angiography</topic><topic>Coronary vessels</topic><topic>Deep Learning</topic><topic>Engineering</topic><topic>Female</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Original</topic><topic>Original Article</topic><topic>Pipelines</topic><topic>Predictive Value of Tests</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Retrospective Studies</topic><topic>Segmentation</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fantazzini, Alice</creatorcontrib><creatorcontrib>Esposito, Mario</creatorcontrib><creatorcontrib>Finotello, Alice</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Pane, Bianca</creatorcontrib><creatorcontrib>Basso, Curzio</creatorcontrib><creatorcontrib>Spinella, Giovanni</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fantazzini, Alice</au><au>Esposito, Mario</au><au>Finotello, Alice</au><au>Auricchio, Ferdinando</au><au>Pane, Bianca</au><au>Basso, Curzio</au><au>Spinella, Giovanni</au><au>Conti, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks</atitle><jtitle>Cardiovascular engineering and technology</jtitle><stitle>Cardiovasc Eng Tech</stitle><addtitle>Cardiovasc Eng Technol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>11</volume><issue>5</issue><spage>576</spage><epage>586</epage><pages>576-586</pages><issn>1869-408X</issn><eissn>1869-4098</eissn><abstract>Purpose
The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence.
Methods
A first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence.
Results
The coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation.
Conclusion
The achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32783134</pmid><doi>10.1007/s13239-020-00481-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5688-9003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-408X |
ispartof | Cardiovascular engineering and technology, 2020-10, Vol.11 (5), p.576-586 |
issn | 1869-408X 1869-4098 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7511465 |
source | MEDLINE; SpringerLink Journals |
subjects | Aged Aged, 80 and over Angiography Aorta Aorta, Abdominal - diagnostic imaging Aortic Aneurysm, Abdominal - diagnostic imaging Aortography Arteries Artificial neural networks Biomedical Engineering and Bioengineering Biomedicine Cardiology Coherence Computed tomography Computed Tomography Angiography Coronary vessels Deep Learning Engineering Female Ground truth Humans Imaging, Three-Dimensional Male Medical imaging Middle Aged Neural networks Original Original Article Pipelines Predictive Value of Tests Radiographic Image Interpretation, Computer-Assisted Retrospective Studies Segmentation Segments |
title | 3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Automatic%20Segmentation%20of%20Aortic%20Computed%20Tomography%20Angiography%20Combining%20Multi-View%202D%20Convolutional%20Neural%20Networks&rft.jtitle=Cardiovascular%20engineering%20and%20technology&rft.au=Fantazzini,%20Alice&rft.date=2020-10-01&rft.volume=11&rft.issue=5&rft.spage=576&rft.epage=586&rft.pages=576-586&rft.issn=1869-408X&rft.eissn=1869-4098&rft_id=info:doi/10.1007/s13239-020-00481-z&rft_dat=%3Cproquest_pubme%3E2450324322%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450324322&rft_id=info:pmid/32783134&rfr_iscdi=true |