3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks

Purpose The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular engineering and technology 2020-10, Vol.11 (5), p.576-586
Hauptverfasser: Fantazzini, Alice, Esposito, Mario, Finotello, Alice, Auricchio, Ferdinando, Pane, Bianca, Basso, Curzio, Spinella, Giovanni, Conti, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue 5
container_start_page 576
container_title Cardiovascular engineering and technology
container_volume 11
creator Fantazzini, Alice
Esposito, Mario
Finotello, Alice
Auricchio, Ferdinando
Pane, Bianca
Basso, Curzio
Spinella, Giovanni
Conti, Michele
description Purpose The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence. Methods A first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence. Results The coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation. Conclusion The achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm.
doi_str_mv 10.1007/s13239-020-00481-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7511465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450324322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e6348f248c79129189ccb9f96734b84400723b9dc6acc303c12e2421c99176763</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtapWgCh_oAdkqZdeAv5KYl8qrZZ-SdAeoFVvVuJ1giGxt3YMWn49sywsbQ_4MqN5b55n5iH0jpIjSkh9nChnXBWEkYIQIWlx9wrtUVmpQhAlX29z-XsXHaR0ReBxpohgO2iXs1pyysUeWvETPMtTGJvJGXxu-9H6CfLgcejwLMR1eR7GZZ7sAl-EMfSxWV6u8Mz37ikHvHXe-R6f5WFyxS9nbzE7gbq_CUNeqzUD_m5zfAjTbYjX6S160zVDsgePcR_9_PzpYv61OP3x5dt8dloYUYupsBUXsmNCmlpRpqhUxrSqU1XNRSuFgFsw3qqFqRpjOOGGMssEo0YpWld1xffRx43uMrejXRjYD8bQy-jGJq50aJz-F_HuUvfhRtclpaIqQeDDo0AMf7JNkx5dMnYYGm9DTpoJDlbIspRAff8f9SrkCMuvWSXcX3DGgMU2LBNDStF222Eo0Wtz9cZcDebqB3P1HTQd_r3GtuXJSiDwDSEB5Hsbn_9-QfYeMo6wuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450324322</pqid></control><display><type>article</type><title>3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Fantazzini, Alice ; Esposito, Mario ; Finotello, Alice ; Auricchio, Ferdinando ; Pane, Bianca ; Basso, Curzio ; Spinella, Giovanni ; Conti, Michele</creator><creatorcontrib>Fantazzini, Alice ; Esposito, Mario ; Finotello, Alice ; Auricchio, Ferdinando ; Pane, Bianca ; Basso, Curzio ; Spinella, Giovanni ; Conti, Michele</creatorcontrib><description>Purpose The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence. Methods A first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence. Results The coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation. Conclusion The achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm.</description><identifier>ISSN: 1869-408X</identifier><identifier>EISSN: 1869-4098</identifier><identifier>DOI: 10.1007/s13239-020-00481-z</identifier><identifier>PMID: 32783134</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aged ; Aged, 80 and over ; Angiography ; Aorta ; Aorta, Abdominal - diagnostic imaging ; Aortic Aneurysm, Abdominal - diagnostic imaging ; Aortography ; Arteries ; Artificial neural networks ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cardiology ; Coherence ; Computed tomography ; Computed Tomography Angiography ; Coronary vessels ; Deep Learning ; Engineering ; Female ; Ground truth ; Humans ; Imaging, Three-Dimensional ; Male ; Medical imaging ; Middle Aged ; Neural networks ; Original ; Original Article ; Pipelines ; Predictive Value of Tests ; Radiographic Image Interpretation, Computer-Assisted ; Retrospective Studies ; Segmentation ; Segments</subject><ispartof>Cardiovascular engineering and technology, 2020-10, Vol.11 (5), p.576-586</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e6348f248c79129189ccb9f96734b84400723b9dc6acc303c12e2421c99176763</citedby><cites>FETCH-LOGICAL-c474t-e6348f248c79129189ccb9f96734b84400723b9dc6acc303c12e2421c99176763</cites><orcidid>0000-0001-5688-9003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13239-020-00481-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13239-020-00481-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32783134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fantazzini, Alice</creatorcontrib><creatorcontrib>Esposito, Mario</creatorcontrib><creatorcontrib>Finotello, Alice</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Pane, Bianca</creatorcontrib><creatorcontrib>Basso, Curzio</creatorcontrib><creatorcontrib>Spinella, Giovanni</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><title>3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks</title><title>Cardiovascular engineering and technology</title><addtitle>Cardiovasc Eng Tech</addtitle><addtitle>Cardiovasc Eng Technol</addtitle><description>Purpose The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence. Methods A first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence. Results The coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation. Conclusion The achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Aorta, Abdominal - diagnostic imaging</subject><subject>Aortic Aneurysm, Abdominal - diagnostic imaging</subject><subject>Aortography</subject><subject>Arteries</subject><subject>Artificial neural networks</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cardiology</subject><subject>Coherence</subject><subject>Computed tomography</subject><subject>Computed Tomography Angiography</subject><subject>Coronary vessels</subject><subject>Deep Learning</subject><subject>Engineering</subject><subject>Female</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Original</subject><subject>Original Article</subject><subject>Pipelines</subject><subject>Predictive Value of Tests</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Retrospective Studies</subject><subject>Segmentation</subject><subject>Segments</subject><issn>1869-408X</issn><issn>1869-4098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UU1P3DAQtapWgCh_oAdkqZdeAv5KYl8qrZZ-SdAeoFVvVuJ1giGxt3YMWn49sywsbQ_4MqN5b55n5iH0jpIjSkh9nChnXBWEkYIQIWlx9wrtUVmpQhAlX29z-XsXHaR0ReBxpohgO2iXs1pyysUeWvETPMtTGJvJGXxu-9H6CfLgcejwLMR1eR7GZZ7sAl-EMfSxWV6u8Mz37ikHvHXe-R6f5WFyxS9nbzE7gbq_CUNeqzUD_m5zfAjTbYjX6S160zVDsgePcR_9_PzpYv61OP3x5dt8dloYUYupsBUXsmNCmlpRpqhUxrSqU1XNRSuFgFsw3qqFqRpjOOGGMssEo0YpWld1xffRx43uMrejXRjYD8bQy-jGJq50aJz-F_HuUvfhRtclpaIqQeDDo0AMf7JNkx5dMnYYGm9DTpoJDlbIspRAff8f9SrkCMuvWSXcX3DGgMU2LBNDStF222Eo0Wtz9cZcDebqB3P1HTQd_r3GtuXJSiDwDSEB5Hsbn_9-QfYeMo6wuQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Fantazzini, Alice</creator><creator>Esposito, Mario</creator><creator>Finotello, Alice</creator><creator>Auricchio, Ferdinando</creator><creator>Pane, Bianca</creator><creator>Basso, Curzio</creator><creator>Spinella, Giovanni</creator><creator>Conti, Michele</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5688-9003</orcidid></search><sort><creationdate>20201001</creationdate><title>3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks</title><author>Fantazzini, Alice ; Esposito, Mario ; Finotello, Alice ; Auricchio, Ferdinando ; Pane, Bianca ; Basso, Curzio ; Spinella, Giovanni ; Conti, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e6348f248c79129189ccb9f96734b84400723b9dc6acc303c12e2421c99176763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Aorta, Abdominal - diagnostic imaging</topic><topic>Aortic Aneurysm, Abdominal - diagnostic imaging</topic><topic>Aortography</topic><topic>Arteries</topic><topic>Artificial neural networks</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cardiology</topic><topic>Coherence</topic><topic>Computed tomography</topic><topic>Computed Tomography Angiography</topic><topic>Coronary vessels</topic><topic>Deep Learning</topic><topic>Engineering</topic><topic>Female</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Original</topic><topic>Original Article</topic><topic>Pipelines</topic><topic>Predictive Value of Tests</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Retrospective Studies</topic><topic>Segmentation</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fantazzini, Alice</creatorcontrib><creatorcontrib>Esposito, Mario</creatorcontrib><creatorcontrib>Finotello, Alice</creatorcontrib><creatorcontrib>Auricchio, Ferdinando</creatorcontrib><creatorcontrib>Pane, Bianca</creatorcontrib><creatorcontrib>Basso, Curzio</creatorcontrib><creatorcontrib>Spinella, Giovanni</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cardiovascular engineering and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fantazzini, Alice</au><au>Esposito, Mario</au><au>Finotello, Alice</au><au>Auricchio, Ferdinando</au><au>Pane, Bianca</au><au>Basso, Curzio</au><au>Spinella, Giovanni</au><au>Conti, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks</atitle><jtitle>Cardiovascular engineering and technology</jtitle><stitle>Cardiovasc Eng Tech</stitle><addtitle>Cardiovasc Eng Technol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>11</volume><issue>5</issue><spage>576</spage><epage>586</epage><pages>576-586</pages><issn>1869-408X</issn><eissn>1869-4098</eissn><abstract>Purpose The quantitative analysis of contrast-enhanced Computed Tomography Angiography (CTA) is essential to assess aortic anatomy, identify pathologies, and perform preoperative planning in vascular surgery. To overcome the limitations given by manual and semi-automatic segmentation tools, we apply a deep learning-based pipeline to automatically segment the CTA scans of the aortic lumen, from the ascending aorta to the iliac arteries, accounting for 3D spatial coherence. Methods A first convolutional neural network (CNN) is used to coarsely segment and locate the aorta in the whole sub-sampled CTA volume, then three single-view CNNs are used to effectively segment the aortic lumen from axial, sagittal, and coronal planes under higher resolution. Finally, the predictions of the three orthogonal networks are integrated to obtain a segmentation with spatial coherence. Results The coarse segmentation performed to identify the aortic lumen achieved a Dice coefficient (DSC) of 0.92 ± 0.01. Single-view axial, sagittal, and coronal CNNs provided a DSC of 0.92 ± 0.02, 0.92 ± 0.04, and 0.91 ± 0.02, respectively. Multi-view integration provided a DSC of 0.93 ± 0.02 and an average surface distance of 0.80 ± 0.26 mm on a test set of 10 CTA scans. The generation of the ground truth dataset took about 150 h and the overall training process took 18 h. In prediction phase, the adopted pipeline takes around 25 ± 1 s to get the final segmentation. Conclusion The achieved results show that the proposed pipeline can effectively localize and segment the aortic lumen in subjects with aneurysm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32783134</pmid><doi>10.1007/s13239-020-00481-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5688-9003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-408X
ispartof Cardiovascular engineering and technology, 2020-10, Vol.11 (5), p.576-586
issn 1869-408X
1869-4098
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7511465
source MEDLINE; SpringerLink Journals
subjects Aged
Aged, 80 and over
Angiography
Aorta
Aorta, Abdominal - diagnostic imaging
Aortic Aneurysm, Abdominal - diagnostic imaging
Aortography
Arteries
Artificial neural networks
Biomedical Engineering and Bioengineering
Biomedicine
Cardiology
Coherence
Computed tomography
Computed Tomography Angiography
Coronary vessels
Deep Learning
Engineering
Female
Ground truth
Humans
Imaging, Three-Dimensional
Male
Medical imaging
Middle Aged
Neural networks
Original
Original Article
Pipelines
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted
Retrospective Studies
Segmentation
Segments
title 3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Automatic%20Segmentation%20of%20Aortic%20Computed%20Tomography%20Angiography%20Combining%20Multi-View%202D%20Convolutional%20Neural%20Networks&rft.jtitle=Cardiovascular%20engineering%20and%20technology&rft.au=Fantazzini,%20Alice&rft.date=2020-10-01&rft.volume=11&rft.issue=5&rft.spage=576&rft.epage=586&rft.pages=576-586&rft.issn=1869-408X&rft.eissn=1869-4098&rft_id=info:doi/10.1007/s13239-020-00481-z&rft_dat=%3Cproquest_pubme%3E2450324322%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450324322&rft_id=info:pmid/32783134&rfr_iscdi=true