Automated vs. manual pain coding and heart rate estimations based on videos of older adults with and without dementia

Introduction Technological advances have allowed for the estimation of physiological indicators from video data. FaceReader™ is an automated facial analysis software that has been used widely in studies of facial expressions of emotion and was recently updated to allow for the estimation of heart ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of rehabilitation and assistive technologies engineering 2020-01, Vol.7, p.2055668320950196-2055668320950196
Hauptverfasser: Castillo, Louise IR, Browne, M Erin, Hadjistavropoulos, Thomas, Prkachin, Kenneth M, Goubran, Rafik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2055668320950196
container_issue
container_start_page 2055668320950196
container_title Journal of rehabilitation and assistive technologies engineering
container_volume 7
creator Castillo, Louise IR
Browne, M Erin
Hadjistavropoulos, Thomas
Prkachin, Kenneth M
Goubran, Rafik
description Introduction Technological advances have allowed for the estimation of physiological indicators from video data. FaceReader™ is an automated facial analysis software that has been used widely in studies of facial expressions of emotion and was recently updated to allow for the estimation of heart rate (HR) using remote photoplethysmography (rPPG). We investigated FaceReader™-based heart rate and pain expression estimations in older adults in relation to manual coding by experts. Methods Using a video dataset of older adult patients with and without dementia, we assessed the relationship between FaceReader’s™ HR estimations against a well-established Video Magnification (VM) algorithm during baseline and pain conditions. Furthermore, we examined the correspondence between the Facial Action Coding System (FACS)-based pain scores obtained through FaceReader™ and manual coding. Results FaceReader’s™ HR estimations were correlated with VM algorithm in baseline and pain conditions. Non-verbal FaceReader™ pain scores and manual coding were also highly correlated despite discrepancies between the FaceReader™ and manual coding in the absolute value of scores based on pain-related facial action coding of the events preceding and following the pain response. Conclusions Compared to expert manual FACS coding and optimized VM algorithm, FaceReader™ showed good results in estimating HR values and non-verbal pain scores.
doi_str_mv 10.1177/2055668320950196
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7509718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2055668320950196</sage_id><sourcerecordid>2444286054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3e7eb4ed162d5ab2762f56031dabfa0f8545b0696f83437f8c87f6bcc93f69523</originalsourceid><addsrcrecordid>eNp1kc1rFTEUxQex2FK7dyUBN26m5nuSjVBKa4WCG7sOmUnyXspM8szHE_97M7621oKrXG5-59x7uF33DsFzhIbhE4aMcS4IhpJBJPmr7mRt9Wvv9bP6uDvL-R5CiJjgUrI33TEhEFGKyElXL2qJiy7WgH0-B4sOVc9gp30AUzQ-bIAOBmytTgWkhgGbi2-8jyGDUeemiwHsvbExg-hAnI1NQJs6lwx--rL9o1-LWAswdrGheP22O3J6zvbs4T3t7q6vvl_e9Lffvny9vLjtJyJx6Ykd7EitQRwbpkc8cOwYhwQZPToNnWCUjZBL7gShZHBiEoPj4zRJ4rhkmJx2nw--uzou1kxteNKz2qUWIf1SUXv170_wW7WJezUwKAckmsHHB4MUf9SWXS0-T3aedbCxZoUpFZwwimVDP7xA72NNocVbKYoFh4w2Ch6oKcWck3VPyyCo1rOql2dtkvfPQzwJHo_YgP4AZL2xf6f-1_A360CrQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444286054</pqid></control><display><type>article</type><title>Automated vs. manual pain coding and heart rate estimations based on videos of older adults with and without dementia</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Castillo, Louise IR ; Browne, M Erin ; Hadjistavropoulos, Thomas ; Prkachin, Kenneth M ; Goubran, Rafik</creator><creatorcontrib>Castillo, Louise IR ; Browne, M Erin ; Hadjistavropoulos, Thomas ; Prkachin, Kenneth M ; Goubran, Rafik</creatorcontrib><description>Introduction Technological advances have allowed for the estimation of physiological indicators from video data. FaceReader™ is an automated facial analysis software that has been used widely in studies of facial expressions of emotion and was recently updated to allow for the estimation of heart rate (HR) using remote photoplethysmography (rPPG). We investigated FaceReader™-based heart rate and pain expression estimations in older adults in relation to manual coding by experts. Methods Using a video dataset of older adult patients with and without dementia, we assessed the relationship between FaceReader’s™ HR estimations against a well-established Video Magnification (VM) algorithm during baseline and pain conditions. Furthermore, we examined the correspondence between the Facial Action Coding System (FACS)-based pain scores obtained through FaceReader™ and manual coding. Results FaceReader’s™ HR estimations were correlated with VM algorithm in baseline and pain conditions. Non-verbal FaceReader™ pain scores and manual coding were also highly correlated despite discrepancies between the FaceReader™ and manual coding in the absolute value of scores based on pain-related facial action coding of the events preceding and following the pain response. Conclusions Compared to expert manual FACS coding and optimized VM algorithm, FaceReader™ showed good results in estimating HR values and non-verbal pain scores.</description><identifier>ISSN: 2055-6683</identifier><identifier>EISSN: 2055-6683</identifier><identifier>DOI: 10.1177/2055668320950196</identifier><identifier>PMID: 33014413</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Alzheimer's disease ; Automation ; Dementia ; Heart rate ; Older people ; Original ; Pain</subject><ispartof>Journal of rehabilitation and assistive technologies engineering, 2020-01, Vol.7, p.2055668320950196-2055668320950196</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>The Author(s) 2020. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020 2020 SAGE Publications Ltd, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3e7eb4ed162d5ab2762f56031dabfa0f8545b0696f83437f8c87f6bcc93f69523</citedby><cites>FETCH-LOGICAL-c392t-3e7eb4ed162d5ab2762f56031dabfa0f8545b0696f83437f8c87f6bcc93f69523</cites><orcidid>0000-0002-8586-0450 ; 0000-0003-4087-416X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509718/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7509718/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,21966,27853,27924,27925,44945,45333,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33014413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castillo, Louise IR</creatorcontrib><creatorcontrib>Browne, M Erin</creatorcontrib><creatorcontrib>Hadjistavropoulos, Thomas</creatorcontrib><creatorcontrib>Prkachin, Kenneth M</creatorcontrib><creatorcontrib>Goubran, Rafik</creatorcontrib><title>Automated vs. manual pain coding and heart rate estimations based on videos of older adults with and without dementia</title><title>Journal of rehabilitation and assistive technologies engineering</title><addtitle>J Rehabil Assist Technol Eng</addtitle><description>Introduction Technological advances have allowed for the estimation of physiological indicators from video data. FaceReader™ is an automated facial analysis software that has been used widely in studies of facial expressions of emotion and was recently updated to allow for the estimation of heart rate (HR) using remote photoplethysmography (rPPG). We investigated FaceReader™-based heart rate and pain expression estimations in older adults in relation to manual coding by experts. Methods Using a video dataset of older adult patients with and without dementia, we assessed the relationship between FaceReader’s™ HR estimations against a well-established Video Magnification (VM) algorithm during baseline and pain conditions. Furthermore, we examined the correspondence between the Facial Action Coding System (FACS)-based pain scores obtained through FaceReader™ and manual coding. Results FaceReader’s™ HR estimations were correlated with VM algorithm in baseline and pain conditions. Non-verbal FaceReader™ pain scores and manual coding were also highly correlated despite discrepancies between the FaceReader™ and manual coding in the absolute value of scores based on pain-related facial action coding of the events preceding and following the pain response. Conclusions Compared to expert manual FACS coding and optimized VM algorithm, FaceReader™ showed good results in estimating HR values and non-verbal pain scores.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Automation</subject><subject>Dementia</subject><subject>Heart rate</subject><subject>Older people</subject><subject>Original</subject><subject>Pain</subject><issn>2055-6683</issn><issn>2055-6683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc1rFTEUxQex2FK7dyUBN26m5nuSjVBKa4WCG7sOmUnyXspM8szHE_97M7621oKrXG5-59x7uF33DsFzhIbhE4aMcS4IhpJBJPmr7mRt9Wvv9bP6uDvL-R5CiJjgUrI33TEhEFGKyElXL2qJiy7WgH0-B4sOVc9gp30AUzQ-bIAOBmytTgWkhgGbi2-8jyGDUeemiwHsvbExg-hAnI1NQJs6lwx--rL9o1-LWAswdrGheP22O3J6zvbs4T3t7q6vvl_e9Lffvny9vLjtJyJx6Ykd7EitQRwbpkc8cOwYhwQZPToNnWCUjZBL7gShZHBiEoPj4zRJ4rhkmJx2nw--uzou1kxteNKz2qUWIf1SUXv170_wW7WJezUwKAckmsHHB4MUf9SWXS0-T3aedbCxZoUpFZwwimVDP7xA72NNocVbKYoFh4w2Ch6oKcWck3VPyyCo1rOql2dtkvfPQzwJHo_YgP4AZL2xf6f-1_A360CrQw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Castillo, Louise IR</creator><creator>Browne, M Erin</creator><creator>Hadjistavropoulos, Thomas</creator><creator>Prkachin, Kenneth M</creator><creator>Goubran, Rafik</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>KB0</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8586-0450</orcidid><orcidid>https://orcid.org/0000-0003-4087-416X</orcidid></search><sort><creationdate>202001</creationdate><title>Automated vs. manual pain coding and heart rate estimations based on videos of older adults with and without dementia</title><author>Castillo, Louise IR ; Browne, M Erin ; Hadjistavropoulos, Thomas ; Prkachin, Kenneth M ; Goubran, Rafik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3e7eb4ed162d5ab2762f56031dabfa0f8545b0696f83437f8c87f6bcc93f69523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Automation</topic><topic>Dementia</topic><topic>Heart rate</topic><topic>Older people</topic><topic>Original</topic><topic>Pain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, Louise IR</creatorcontrib><creatorcontrib>Browne, M Erin</creatorcontrib><creatorcontrib>Hadjistavropoulos, Thomas</creatorcontrib><creatorcontrib>Prkachin, Kenneth M</creatorcontrib><creatorcontrib>Goubran, Rafik</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of rehabilitation and assistive technologies engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, Louise IR</au><au>Browne, M Erin</au><au>Hadjistavropoulos, Thomas</au><au>Prkachin, Kenneth M</au><au>Goubran, Rafik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated vs. manual pain coding and heart rate estimations based on videos of older adults with and without dementia</atitle><jtitle>Journal of rehabilitation and assistive technologies engineering</jtitle><addtitle>J Rehabil Assist Technol Eng</addtitle><date>2020-01</date><risdate>2020</risdate><volume>7</volume><spage>2055668320950196</spage><epage>2055668320950196</epage><pages>2055668320950196-2055668320950196</pages><issn>2055-6683</issn><eissn>2055-6683</eissn><abstract>Introduction Technological advances have allowed for the estimation of physiological indicators from video data. FaceReader™ is an automated facial analysis software that has been used widely in studies of facial expressions of emotion and was recently updated to allow for the estimation of heart rate (HR) using remote photoplethysmography (rPPG). We investigated FaceReader™-based heart rate and pain expression estimations in older adults in relation to manual coding by experts. Methods Using a video dataset of older adult patients with and without dementia, we assessed the relationship between FaceReader’s™ HR estimations against a well-established Video Magnification (VM) algorithm during baseline and pain conditions. Furthermore, we examined the correspondence between the Facial Action Coding System (FACS)-based pain scores obtained through FaceReader™ and manual coding. Results FaceReader’s™ HR estimations were correlated with VM algorithm in baseline and pain conditions. Non-verbal FaceReader™ pain scores and manual coding were also highly correlated despite discrepancies between the FaceReader™ and manual coding in the absolute value of scores based on pain-related facial action coding of the events preceding and following the pain response. Conclusions Compared to expert manual FACS coding and optimized VM algorithm, FaceReader™ showed good results in estimating HR values and non-verbal pain scores.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>33014413</pmid><doi>10.1177/2055668320950196</doi><orcidid>https://orcid.org/0000-0002-8586-0450</orcidid><orcidid>https://orcid.org/0000-0003-4087-416X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-6683
ispartof Journal of rehabilitation and assistive technologies engineering, 2020-01, Vol.7, p.2055668320950196-2055668320950196
issn 2055-6683
2055-6683
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7509718
source DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Alzheimer's disease
Automation
Dementia
Heart rate
Older people
Original
Pain
title Automated vs. manual pain coding and heart rate estimations based on videos of older adults with and without dementia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20vs.%20manual%20pain%20coding%20and%20heart%20rate%20estimations%20based%20on%20videos%20of%20older%20adults%20with%20and%20without%20dementia&rft.jtitle=Journal%20of%20rehabilitation%20and%20assistive%20technologies%20engineering&rft.au=Castillo,%20Louise%20IR&rft.date=2020-01&rft.volume=7&rft.spage=2055668320950196&rft.epage=2055668320950196&rft.pages=2055668320950196-2055668320950196&rft.issn=2055-6683&rft.eissn=2055-6683&rft_id=info:doi/10.1177/2055668320950196&rft_dat=%3Cproquest_pubme%3E2444286054%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444286054&rft_id=info:pmid/33014413&rft_sage_id=10.1177_2055668320950196&rfr_iscdi=true