Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects
Background Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition. Objective To provide a comprehensive review of machine learning (ML), deep l...
Gespeichert in:
Veröffentlicht in: | World journal of urology 2020-10, Vol.38 (10), p.2349-2358 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2358 |
---|---|
container_issue | 10 |
container_start_page | 2349 |
container_title | World journal of urology |
container_volume | 38 |
creator | Negassi, Misgana Suarez-Ibarrola, Rodrigo Hein, Simon Miernik, Arkadiusz Reiterer, Alexander |
description | Background
Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition.
Objective
To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition.
Evidence acquisition
A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition.
Evidence synthesis
In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database.
Conclusion
AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets. |
doi_str_mv | 10.1007/s00345-019-03059-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7508959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336255916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f00a9448b0e50aa98106ec5df34211e50e97a84478ab4ba2d6b32c48934b719b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERZeFP8ABWeLSS2Ac20nMAamq-JIq9dKeLceZbF2ycfBHq_0N_Gm83VI-DlxmJM8zr2fmJeQVg7cMoH0XAbiQFTBVAQdZ4hOyYoLzqmvr5ilZQVuLSqiOH5PnMd4AsLYB-Ywcc6ZqKSVbkR-nyzI5a5LzM_UjNSG50VlnJjpjDvcp3fnwLdLRB2py8luTcKBmNtMuurhvsruYfLR-cZa6rdlgfE8NDXjr8G5fT9dIbQ4B50RjMinH0j7QMacckC7BxwVtii_I0WimiC8f8ppcffp4efalOr_4_PXs9LyyUkCqRgCjhOh6QAnGqI5Bg1YOIxc1Y-UNVWs6IdrO9KI39dD0vLaiU1z0LVM9X5MPB90l91scbBmrLKqXUGYPO-2N039XZnetN_5WtxI6JVUROHkQCP57xpj01kWL02Rm9DnqmvOm3FexpqBv_kFvfA7ldoXqCtAAr_dUfaBsuUUMOD4Ow0DvvdYHr3XxWt97XeKavP5zjceWX-YWgB-AWErzBsPvv_8j-xPtCbgU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891660326</pqid></control><display><type>article</type><title>Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects</title><source>Springer Nature - Complete Springer Journals</source><creator>Negassi, Misgana ; Suarez-Ibarrola, Rodrigo ; Hein, Simon ; Miernik, Arkadiusz ; Reiterer, Alexander</creator><creatorcontrib>Negassi, Misgana ; Suarez-Ibarrola, Rodrigo ; Hein, Simon ; Miernik, Arkadiusz ; Reiterer, Alexander</creatorcontrib><description>Background
Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition.
Objective
To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition.
Evidence acquisition
A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition.
Evidence synthesis
In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database.
Conclusion
AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets.</description><identifier>ISSN: 0724-4983</identifier><identifier>EISSN: 1433-8726</identifier><identifier>DOI: 10.1007/s00345-019-03059-0</identifier><identifier>PMID: 31925551</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bladder ; Bladder cancer ; Data acquisition ; Deep learning ; Medicine ; Medicine & Public Health ; Nephrology ; Neural networks ; Oncology ; Topic Paper ; Tumors ; Urology</subject><ispartof>World journal of urology, 2020-10, Vol.38 (10), p.2349-2358</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f00a9448b0e50aa98106ec5df34211e50e97a84478ab4ba2d6b32c48934b719b3</citedby><cites>FETCH-LOGICAL-c540t-f00a9448b0e50aa98106ec5df34211e50e97a84478ab4ba2d6b32c48934b719b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00345-019-03059-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00345-019-03059-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31925551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Negassi, Misgana</creatorcontrib><creatorcontrib>Suarez-Ibarrola, Rodrigo</creatorcontrib><creatorcontrib>Hein, Simon</creatorcontrib><creatorcontrib>Miernik, Arkadiusz</creatorcontrib><creatorcontrib>Reiterer, Alexander</creatorcontrib><title>Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects</title><title>World journal of urology</title><addtitle>World J Urol</addtitle><addtitle>World J Urol</addtitle><description>Background
Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition.
Objective
To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition.
Evidence acquisition
A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition.
Evidence synthesis
In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database.
Conclusion
AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets.</description><subject>Bladder</subject><subject>Bladder cancer</subject><subject>Data acquisition</subject><subject>Deep learning</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Nephrology</subject><subject>Neural networks</subject><subject>Oncology</subject><subject>Topic Paper</subject><subject>Tumors</subject><subject>Urology</subject><issn>0724-4983</issn><issn>1433-8726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi1ERZeFP8ABWeLSS2Ac20nMAamq-JIq9dKeLceZbF2ycfBHq_0N_Gm83VI-DlxmJM8zr2fmJeQVg7cMoH0XAbiQFTBVAQdZ4hOyYoLzqmvr5ilZQVuLSqiOH5PnMd4AsLYB-Ywcc6ZqKSVbkR-nyzI5a5LzM_UjNSG50VlnJjpjDvcp3fnwLdLRB2py8luTcKBmNtMuurhvsruYfLR-cZa6rdlgfE8NDXjr8G5fT9dIbQ4B50RjMinH0j7QMacckC7BxwVtii_I0WimiC8f8ppcffp4efalOr_4_PXs9LyyUkCqRgCjhOh6QAnGqI5Bg1YOIxc1Y-UNVWs6IdrO9KI39dD0vLaiU1z0LVM9X5MPB90l91scbBmrLKqXUGYPO-2N039XZnetN_5WtxI6JVUROHkQCP57xpj01kWL02Rm9DnqmvOm3FexpqBv_kFvfA7ldoXqCtAAr_dUfaBsuUUMOD4Ow0DvvdYHr3XxWt97XeKavP5zjceWX-YWgB-AWErzBsPvv_8j-xPtCbgU</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Negassi, Misgana</creator><creator>Suarez-Ibarrola, Rodrigo</creator><creator>Hein, Simon</creator><creator>Miernik, Arkadiusz</creator><creator>Reiterer, Alexander</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201001</creationdate><title>Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects</title><author>Negassi, Misgana ; Suarez-Ibarrola, Rodrigo ; Hein, Simon ; Miernik, Arkadiusz ; Reiterer, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f00a9448b0e50aa98106ec5df34211e50e97a84478ab4ba2d6b32c48934b719b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bladder</topic><topic>Bladder cancer</topic><topic>Data acquisition</topic><topic>Deep learning</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Nephrology</topic><topic>Neural networks</topic><topic>Oncology</topic><topic>Topic Paper</topic><topic>Tumors</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Negassi, Misgana</creatorcontrib><creatorcontrib>Suarez-Ibarrola, Rodrigo</creatorcontrib><creatorcontrib>Hein, Simon</creatorcontrib><creatorcontrib>Miernik, Arkadiusz</creatorcontrib><creatorcontrib>Reiterer, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>World journal of urology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Negassi, Misgana</au><au>Suarez-Ibarrola, Rodrigo</au><au>Hein, Simon</au><au>Miernik, Arkadiusz</au><au>Reiterer, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects</atitle><jtitle>World journal of urology</jtitle><stitle>World J Urol</stitle><addtitle>World J Urol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>38</volume><issue>10</issue><spage>2349</spage><epage>2358</epage><pages>2349-2358</pages><issn>0724-4983</issn><eissn>1433-8726</eissn><abstract>Background
Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition.
Objective
To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition.
Evidence acquisition
A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition.
Evidence synthesis
In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database.
Conclusion
AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31925551</pmid><doi>10.1007/s00345-019-03059-0</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0724-4983 |
ispartof | World journal of urology, 2020-10, Vol.38 (10), p.2349-2358 |
issn | 0724-4983 1433-8726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7508959 |
source | Springer Nature - Complete Springer Journals |
subjects | Bladder Bladder cancer Data acquisition Deep learning Medicine Medicine & Public Health Nephrology Neural networks Oncology Topic Paper Tumors Urology |
title | Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20artificial%20neural%20networks%20for%20automated%20analysis%20of%20cystoscopic%20images:%20a%20review%20of%20the%20current%20status%20and%20future%20prospects&rft.jtitle=World%20journal%20of%20urology&rft.au=Negassi,%20Misgana&rft.date=2020-10-01&rft.volume=38&rft.issue=10&rft.spage=2349&rft.epage=2358&rft.pages=2349-2358&rft.issn=0724-4983&rft.eissn=1433-8726&rft_id=info:doi/10.1007/s00345-019-03059-0&rft_dat=%3Cproquest_pubme%3E2336255916%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891660326&rft_id=info:pmid/31925551&rfr_iscdi=true |