Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects

Background Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition. Objective To provide a comprehensive review of machine learning (ML), deep l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of urology 2020-10, Vol.38 (10), p.2349-2358
Hauptverfasser: Negassi, Misgana, Suarez-Ibarrola, Rodrigo, Hein, Simon, Miernik, Arkadiusz, Reiterer, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2358
container_issue 10
container_start_page 2349
container_title World journal of urology
container_volume 38
creator Negassi, Misgana
Suarez-Ibarrola, Rodrigo
Hein, Simon
Miernik, Arkadiusz
Reiterer, Alexander
description Background Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition. Objective To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition. Evidence acquisition A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition. Evidence synthesis In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database. Conclusion AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets.
doi_str_mv 10.1007/s00345-019-03059-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7508959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336255916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f00a9448b0e50aa98106ec5df34211e50e97a84478ab4ba2d6b32c48934b719b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERZeFP8ABWeLSS2Ac20nMAamq-JIq9dKeLceZbF2ycfBHq_0N_Gm83VI-DlxmJM8zr2fmJeQVg7cMoH0XAbiQFTBVAQdZ4hOyYoLzqmvr5ilZQVuLSqiOH5PnMd4AsLYB-Ywcc6ZqKSVbkR-nyzI5a5LzM_UjNSG50VlnJjpjDvcp3fnwLdLRB2py8luTcKBmNtMuurhvsruYfLR-cZa6rdlgfE8NDXjr8G5fT9dIbQ4B50RjMinH0j7QMacckC7BxwVtii_I0WimiC8f8ppcffp4efalOr_4_PXs9LyyUkCqRgCjhOh6QAnGqI5Bg1YOIxc1Y-UNVWs6IdrO9KI39dD0vLaiU1z0LVM9X5MPB90l91scbBmrLKqXUGYPO-2N039XZnetN_5WtxI6JVUROHkQCP57xpj01kWL02Rm9DnqmvOm3FexpqBv_kFvfA7ldoXqCtAAr_dUfaBsuUUMOD4Ow0DvvdYHr3XxWt97XeKavP5zjceWX-YWgB-AWErzBsPvv_8j-xPtCbgU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891660326</pqid></control><display><type>article</type><title>Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects</title><source>Springer Nature - Complete Springer Journals</source><creator>Negassi, Misgana ; Suarez-Ibarrola, Rodrigo ; Hein, Simon ; Miernik, Arkadiusz ; Reiterer, Alexander</creator><creatorcontrib>Negassi, Misgana ; Suarez-Ibarrola, Rodrigo ; Hein, Simon ; Miernik, Arkadiusz ; Reiterer, Alexander</creatorcontrib><description>Background Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition. Objective To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition. Evidence acquisition A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition. Evidence synthesis In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database. Conclusion AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets.</description><identifier>ISSN: 0724-4983</identifier><identifier>EISSN: 1433-8726</identifier><identifier>DOI: 10.1007/s00345-019-03059-0</identifier><identifier>PMID: 31925551</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bladder ; Bladder cancer ; Data acquisition ; Deep learning ; Medicine ; Medicine &amp; Public Health ; Nephrology ; Neural networks ; Oncology ; Topic Paper ; Tumors ; Urology</subject><ispartof>World journal of urology, 2020-10, Vol.38 (10), p.2349-2358</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f00a9448b0e50aa98106ec5df34211e50e97a84478ab4ba2d6b32c48934b719b3</citedby><cites>FETCH-LOGICAL-c540t-f00a9448b0e50aa98106ec5df34211e50e97a84478ab4ba2d6b32c48934b719b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00345-019-03059-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00345-019-03059-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31925551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Negassi, Misgana</creatorcontrib><creatorcontrib>Suarez-Ibarrola, Rodrigo</creatorcontrib><creatorcontrib>Hein, Simon</creatorcontrib><creatorcontrib>Miernik, Arkadiusz</creatorcontrib><creatorcontrib>Reiterer, Alexander</creatorcontrib><title>Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects</title><title>World journal of urology</title><addtitle>World J Urol</addtitle><addtitle>World J Urol</addtitle><description>Background Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition. Objective To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition. Evidence acquisition A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition. Evidence synthesis In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database. Conclusion AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets.</description><subject>Bladder</subject><subject>Bladder cancer</subject><subject>Data acquisition</subject><subject>Deep learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nephrology</subject><subject>Neural networks</subject><subject>Oncology</subject><subject>Topic Paper</subject><subject>Tumors</subject><subject>Urology</subject><issn>0724-4983</issn><issn>1433-8726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi1ERZeFP8ABWeLSS2Ac20nMAamq-JIq9dKeLceZbF2ycfBHq_0N_Gm83VI-DlxmJM8zr2fmJeQVg7cMoH0XAbiQFTBVAQdZ4hOyYoLzqmvr5ilZQVuLSqiOH5PnMd4AsLYB-Ywcc6ZqKSVbkR-nyzI5a5LzM_UjNSG50VlnJjpjDvcp3fnwLdLRB2py8luTcKBmNtMuurhvsruYfLR-cZa6rdlgfE8NDXjr8G5fT9dIbQ4B50RjMinH0j7QMacckC7BxwVtii_I0WimiC8f8ppcffp4efalOr_4_PXs9LyyUkCqRgCjhOh6QAnGqI5Bg1YOIxc1Y-UNVWs6IdrO9KI39dD0vLaiU1z0LVM9X5MPB90l91scbBmrLKqXUGYPO-2N039XZnetN_5WtxI6JVUROHkQCP57xpj01kWL02Rm9DnqmvOm3FexpqBv_kFvfA7ldoXqCtAAr_dUfaBsuUUMOD4Ow0DvvdYHr3XxWt97XeKavP5zjceWX-YWgB-AWErzBsPvv_8j-xPtCbgU</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Negassi, Misgana</creator><creator>Suarez-Ibarrola, Rodrigo</creator><creator>Hein, Simon</creator><creator>Miernik, Arkadiusz</creator><creator>Reiterer, Alexander</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201001</creationdate><title>Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects</title><author>Negassi, Misgana ; Suarez-Ibarrola, Rodrigo ; Hein, Simon ; Miernik, Arkadiusz ; Reiterer, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f00a9448b0e50aa98106ec5df34211e50e97a84478ab4ba2d6b32c48934b719b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bladder</topic><topic>Bladder cancer</topic><topic>Data acquisition</topic><topic>Deep learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nephrology</topic><topic>Neural networks</topic><topic>Oncology</topic><topic>Topic Paper</topic><topic>Tumors</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Negassi, Misgana</creatorcontrib><creatorcontrib>Suarez-Ibarrola, Rodrigo</creatorcontrib><creatorcontrib>Hein, Simon</creatorcontrib><creatorcontrib>Miernik, Arkadiusz</creatorcontrib><creatorcontrib>Reiterer, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>World journal of urology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Negassi, Misgana</au><au>Suarez-Ibarrola, Rodrigo</au><au>Hein, Simon</au><au>Miernik, Arkadiusz</au><au>Reiterer, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects</atitle><jtitle>World journal of urology</jtitle><stitle>World J Urol</stitle><addtitle>World J Urol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>38</volume><issue>10</issue><spage>2349</spage><epage>2358</epage><pages>2349-2358</pages><issn>0724-4983</issn><eissn>1433-8726</eissn><abstract>Background Optimal detection and surveillance of bladder cancer (BCa) rely primarily on the cystoscopic visualization of bladder lesions. AI-assisted cystoscopy may improve image recognition and accelerate data acquisition. Objective To provide a comprehensive review of machine learning (ML), deep learning (DL) and convolutional neural network (CNN) applications in cystoscopic image recognition. Evidence acquisition A detailed search of original articles was performed using the PubMed-MEDLINE database to identify recent English literature relevant to ML, DL and CNN applications in cystoscopic image recognition. Evidence synthesis In total, two articles and one conference abstract were identified addressing the application of AI methods in cystoscopic image recognition. These investigations showed accuracies exceeding 90% for tumor detection; however, future work is necessary to incorporate these methods into AI-aided cystoscopy and compared to other tumor visualization tools. Furthermore, we present results from the RaVeNNA-4pi consortium initiative which has extracted 4200 frames from 62 videos, analyzed them with the U-Net network and achieved an average dice score of 0.67. Improvements in its precision can be achieved by augmenting the video/frame database. Conclusion AI-aided cystoscopy has the potential to outperform urologists at recognizing and classifying bladder lesions. To ensure their real-life implementation, however, these algorithms require external validation to generalize their results across other data sets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31925551</pmid><doi>10.1007/s00345-019-03059-0</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0724-4983
ispartof World journal of urology, 2020-10, Vol.38 (10), p.2349-2358
issn 0724-4983
1433-8726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7508959
source Springer Nature - Complete Springer Journals
subjects Bladder
Bladder cancer
Data acquisition
Deep learning
Medicine
Medicine & Public Health
Nephrology
Neural networks
Oncology
Topic Paper
Tumors
Urology
title Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20artificial%20neural%20networks%20for%20automated%20analysis%20of%20cystoscopic%20images:%20a%20review%20of%20the%20current%20status%20and%20future%20prospects&rft.jtitle=World%20journal%20of%20urology&rft.au=Negassi,%20Misgana&rft.date=2020-10-01&rft.volume=38&rft.issue=10&rft.spage=2349&rft.epage=2358&rft.pages=2349-2358&rft.issn=0724-4983&rft.eissn=1433-8726&rft_id=info:doi/10.1007/s00345-019-03059-0&rft_dat=%3Cproquest_pubme%3E2336255916%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891660326&rft_id=info:pmid/31925551&rfr_iscdi=true