A Perspective from a Case Conference on Comparing the Diagnostic Process: Human Diagnostic Thinking vs. Artificial Intelligence (AI) Decision Support Tools

Artificial intelligence (AI) has made great contributions to the healthcare industry. However, its effect on medical diagnosis has not been well explored. Here, we examined a trial comparing the thinking process between a computer and a master in diagnosis at a clinical conference in Japan, with a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2020-08, Vol.17 (17), p.6110
Hauptverfasser: Harada, Taku, Shimizu, Taro, Kaji, Yuki, Suyama, Yasuhiro, Matsumoto, Tomohiro, Kosaka, Chintaro, Shimizu, Hidefumi, Nei, Takatoshi, Watanuki, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 6110
container_title International journal of environmental research and public health
container_volume 17
creator Harada, Taku
Shimizu, Taro
Kaji, Yuki
Suyama, Yasuhiro
Matsumoto, Tomohiro
Kosaka, Chintaro
Shimizu, Hidefumi
Nei, Takatoshi
Watanuki, Satoshi
description Artificial intelligence (AI) has made great contributions to the healthcare industry. However, its effect on medical diagnosis has not been well explored. Here, we examined a trial comparing the thinking process between a computer and a master in diagnosis at a clinical conference in Japan, with a focus on general diagnosis. Consequently, not only was AI unable to exhibit its thinking process, it also failed to include the final diagnosis. The following issues were highlighted: (1) input information to AI could not be weighted in order of importance for diagnosis; (2) AI could not deal with comorbidities (see Hickam’s dictum); (3) AI was unable to consider the timeline of the illness (depending on the tool); (4) AI was unable to consider patient context; (5) AI could not obtain input information by themselves. This comparison of the thinking process uncovered a future perspective on the use of diagnostic support tools.
doi_str_mv 10.3390/ijerph17176110
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7504543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437458892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-71855ecd79d669c0dcfcadcc8f2a85911a12127ac40c16d4389a608c0ee66c133</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi1ERT_gytkSl3JIaq8_1ssBKUoLjVSplQjnlZmdTRx27cX2RuK38GfZkAq1Pc2M5pl35tUQ8p6zuRAVu3I7jMOWl7zUnLNX5IxrzWZSM_76SX5KzlPaMSaM1NUbcioKIwtl-Bn5s6APGNOAkN0eaRtDTy1d2oR0GXyLET0gDX6q-sFG5zc0b5FeO7vxIWUH9CEGwJQ-0duxt_5pZ711_udhYp_mdBGzax0429GVz9h1bvNP-nKx-kivEVxy05Zv4zCEmOk6hC69JSet7RK-e4wX5PuXm_XydnZ3_3W1XNzNQFQqz0pulEJoyqrRugLWQAu2ATBtYY2qOLe84EVpQTLgupHCVFYzAwxRa-BCXJDPR91h_NFjA-hztF09RNfb-LsO1tXPO95t603Y16ViUsmDwOWjQAy_Rky57l2CyaP1GMZUF1KUkqlKFhP64QW6C2P0k70jpYypDtT8SEEMKUVs_x_DWX34e_387-Ive_aiPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437458892</pqid></control><display><type>article</type><title>A Perspective from a Case Conference on Comparing the Diagnostic Process: Human Diagnostic Thinking vs. Artificial Intelligence (AI) Decision Support Tools</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Harada, Taku ; Shimizu, Taro ; Kaji, Yuki ; Suyama, Yasuhiro ; Matsumoto, Tomohiro ; Kosaka, Chintaro ; Shimizu, Hidefumi ; Nei, Takatoshi ; Watanuki, Satoshi</creator><creatorcontrib>Harada, Taku ; Shimizu, Taro ; Kaji, Yuki ; Suyama, Yasuhiro ; Matsumoto, Tomohiro ; Kosaka, Chintaro ; Shimizu, Hidefumi ; Nei, Takatoshi ; Watanuki, Satoshi</creatorcontrib><description>Artificial intelligence (AI) has made great contributions to the healthcare industry. However, its effect on medical diagnosis has not been well explored. Here, we examined a trial comparing the thinking process between a computer and a master in diagnosis at a clinical conference in Japan, with a focus on general diagnosis. Consequently, not only was AI unable to exhibit its thinking process, it also failed to include the final diagnosis. The following issues were highlighted: (1) input information to AI could not be weighted in order of importance for diagnosis; (2) AI could not deal with comorbidities (see Hickam’s dictum); (3) AI was unable to consider the timeline of the illness (depending on the tool); (4) AI was unable to consider patient context; (5) AI could not obtain input information by themselves. This comparison of the thinking process uncovered a future perspective on the use of diagnostic support tools.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph17176110</identifier><identifier>PMID: 32842581</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Abdomen ; Accuracy ; Artificial intelligence ; Chronic obstructive pulmonary disease ; Diagnosis ; Diagnostic software ; Diagnostic systems ; Disease ; Dysphagia ; Guillain-Barre syndrome ; Hospitals ; Keywords ; Physicians ; Tuberculosis</subject><ispartof>International journal of environmental research and public health, 2020-08, Vol.17 (17), p.6110</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-71855ecd79d669c0dcfcadcc8f2a85911a12127ac40c16d4389a608c0ee66c133</citedby><cites>FETCH-LOGICAL-c395t-71855ecd79d669c0dcfcadcc8f2a85911a12127ac40c16d4389a608c0ee66c133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504543/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504543/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Harada, Taku</creatorcontrib><creatorcontrib>Shimizu, Taro</creatorcontrib><creatorcontrib>Kaji, Yuki</creatorcontrib><creatorcontrib>Suyama, Yasuhiro</creatorcontrib><creatorcontrib>Matsumoto, Tomohiro</creatorcontrib><creatorcontrib>Kosaka, Chintaro</creatorcontrib><creatorcontrib>Shimizu, Hidefumi</creatorcontrib><creatorcontrib>Nei, Takatoshi</creatorcontrib><creatorcontrib>Watanuki, Satoshi</creatorcontrib><title>A Perspective from a Case Conference on Comparing the Diagnostic Process: Human Diagnostic Thinking vs. Artificial Intelligence (AI) Decision Support Tools</title><title>International journal of environmental research and public health</title><description>Artificial intelligence (AI) has made great contributions to the healthcare industry. However, its effect on medical diagnosis has not been well explored. Here, we examined a trial comparing the thinking process between a computer and a master in diagnosis at a clinical conference in Japan, with a focus on general diagnosis. Consequently, not only was AI unable to exhibit its thinking process, it also failed to include the final diagnosis. The following issues were highlighted: (1) input information to AI could not be weighted in order of importance for diagnosis; (2) AI could not deal with comorbidities (see Hickam’s dictum); (3) AI was unable to consider the timeline of the illness (depending on the tool); (4) AI was unable to consider patient context; (5) AI could not obtain input information by themselves. This comparison of the thinking process uncovered a future perspective on the use of diagnostic support tools.</description><subject>Abdomen</subject><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Diagnosis</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Disease</subject><subject>Dysphagia</subject><subject>Guillain-Barre syndrome</subject><subject>Hospitals</subject><subject>Keywords</subject><subject>Physicians</subject><subject>Tuberculosis</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1vEzEQhi1ERT_gytkSl3JIaq8_1ssBKUoLjVSplQjnlZmdTRx27cX2RuK38GfZkAq1Pc2M5pl35tUQ8p6zuRAVu3I7jMOWl7zUnLNX5IxrzWZSM_76SX5KzlPaMSaM1NUbcioKIwtl-Bn5s6APGNOAkN0eaRtDTy1d2oR0GXyLET0gDX6q-sFG5zc0b5FeO7vxIWUH9CEGwJQ-0duxt_5pZ711_udhYp_mdBGzax0429GVz9h1bvNP-nKx-kivEVxy05Zv4zCEmOk6hC69JSet7RK-e4wX5PuXm_XydnZ3_3W1XNzNQFQqz0pulEJoyqrRugLWQAu2ATBtYY2qOLe84EVpQTLgupHCVFYzAwxRa-BCXJDPR91h_NFjA-hztF09RNfb-LsO1tXPO95t603Y16ViUsmDwOWjQAy_Rky57l2CyaP1GMZUF1KUkqlKFhP64QW6C2P0k70jpYypDtT8SEEMKUVs_x_DWX34e_387-Ive_aiPg</recordid><startdate>20200822</startdate><enddate>20200822</enddate><creator>Harada, Taku</creator><creator>Shimizu, Taro</creator><creator>Kaji, Yuki</creator><creator>Suyama, Yasuhiro</creator><creator>Matsumoto, Tomohiro</creator><creator>Kosaka, Chintaro</creator><creator>Shimizu, Hidefumi</creator><creator>Nei, Takatoshi</creator><creator>Watanuki, Satoshi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200822</creationdate><title>A Perspective from a Case Conference on Comparing the Diagnostic Process: Human Diagnostic Thinking vs. Artificial Intelligence (AI) Decision Support Tools</title><author>Harada, Taku ; Shimizu, Taro ; Kaji, Yuki ; Suyama, Yasuhiro ; Matsumoto, Tomohiro ; Kosaka, Chintaro ; Shimizu, Hidefumi ; Nei, Takatoshi ; Watanuki, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-71855ecd79d669c0dcfcadcc8f2a85911a12127ac40c16d4389a608c0ee66c133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abdomen</topic><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Diagnosis</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Disease</topic><topic>Dysphagia</topic><topic>Guillain-Barre syndrome</topic><topic>Hospitals</topic><topic>Keywords</topic><topic>Physicians</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harada, Taku</creatorcontrib><creatorcontrib>Shimizu, Taro</creatorcontrib><creatorcontrib>Kaji, Yuki</creatorcontrib><creatorcontrib>Suyama, Yasuhiro</creatorcontrib><creatorcontrib>Matsumoto, Tomohiro</creatorcontrib><creatorcontrib>Kosaka, Chintaro</creatorcontrib><creatorcontrib>Shimizu, Hidefumi</creatorcontrib><creatorcontrib>Nei, Takatoshi</creatorcontrib><creatorcontrib>Watanuki, Satoshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harada, Taku</au><au>Shimizu, Taro</au><au>Kaji, Yuki</au><au>Suyama, Yasuhiro</au><au>Matsumoto, Tomohiro</au><au>Kosaka, Chintaro</au><au>Shimizu, Hidefumi</au><au>Nei, Takatoshi</au><au>Watanuki, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Perspective from a Case Conference on Comparing the Diagnostic Process: Human Diagnostic Thinking vs. Artificial Intelligence (AI) Decision Support Tools</atitle><jtitle>International journal of environmental research and public health</jtitle><date>2020-08-22</date><risdate>2020</risdate><volume>17</volume><issue>17</issue><spage>6110</spage><pages>6110-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Artificial intelligence (AI) has made great contributions to the healthcare industry. However, its effect on medical diagnosis has not been well explored. Here, we examined a trial comparing the thinking process between a computer and a master in diagnosis at a clinical conference in Japan, with a focus on general diagnosis. Consequently, not only was AI unable to exhibit its thinking process, it also failed to include the final diagnosis. The following issues were highlighted: (1) input information to AI could not be weighted in order of importance for diagnosis; (2) AI could not deal with comorbidities (see Hickam’s dictum); (3) AI was unable to consider the timeline of the illness (depending on the tool); (4) AI was unable to consider patient context; (5) AI could not obtain input information by themselves. This comparison of the thinking process uncovered a future perspective on the use of diagnostic support tools.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32842581</pmid><doi>10.3390/ijerph17176110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2020-08, Vol.17 (17), p.6110
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7504543
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Abdomen
Accuracy
Artificial intelligence
Chronic obstructive pulmonary disease
Diagnosis
Diagnostic software
Diagnostic systems
Disease
Dysphagia
Guillain-Barre syndrome
Hospitals
Keywords
Physicians
Tuberculosis
title A Perspective from a Case Conference on Comparing the Diagnostic Process: Human Diagnostic Thinking vs. Artificial Intelligence (AI) Decision Support Tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Perspective%20from%20a%20Case%20Conference%20on%20Comparing%20the%20Diagnostic%20Process:%20Human%20Diagnostic%20Thinking%20vs.%20Artificial%20Intelligence%20(AI)%20Decision%20Support%20Tools&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Harada,%20Taku&rft.date=2020-08-22&rft.volume=17&rft.issue=17&rft.spage=6110&rft.pages=6110-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph17176110&rft_dat=%3Cproquest_pubme%3E2437458892%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437458892&rft_id=info:pmid/32842581&rfr_iscdi=true