Low-dimensional dynamics for working memory and time encoding

Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (37), p.23021-23032
Hauptverfasser: Cueva, Christopher J., Saez, Alex, Marcos, Encarni, Genovesio, Aldo, Jazayeri, Mehrdad, Romo, Ranulfo, Salzman, C. Daniel, Shadlen, Michael N., Fusi, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23032
container_issue 37
container_start_page 23021
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Cueva, Christopher J.
Saez, Alex
Marcos, Encarni
Genovesio, Aldo
Jazayeri, Mehrdad
Romo, Ranulfo
Salzman, C. Daniel
Shadlen, Michael N.
Fusi, Stefano
description Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data.
doi_str_mv 10.1073/pnas.1915984117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969233</jstor_id><sourcerecordid>26969233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-ad4c355d80193557b65e79e8f263d432e82daa50643b1a0ec4f2547f3af9d4ac3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoWh9rV8qAGzejeU6ShYKILyi40XVIk0ydOpPUZGrpvzeltT5Wd3G-e7j3HACOEbxAkJPLqdfpAknEpKAI8S0wQFCisqISboMBhJiXgmK6B_ZTmkAIJRNwF-wRLJjkrBqAq2GYl7bpnE9N8Lot7MLrrjGpqEMs5iG-N35cdK4LcVFob4s-s4XzJtgsHIKdWrfJHa3nAXi9v3u5fSyHzw9PtzfD0lBK-lJbaghjVkAk8-SjijkunahxRSwl2AlstWawomSENHSG1phRXhNdS0u1IQfgeuU7nY06Z43zfdStmsam03Ghgm7UX8U3b2ocPhVnOQKGs8H52iCGj5lLveqaZFzbau_CLClMiai4IBxl9OwfOgmzmKNZUpQTyDKaqcsVZWJIKbp6cwyCalmNWlajfqrJG6e_f9jw311k4GQFTFIf4kbHlawkJoR8AX6ilEo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447305386</pqid></control><display><type>article</type><title>Low-dimensional dynamics for working memory and time encoding</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cueva, Christopher J. ; Saez, Alex ; Marcos, Encarni ; Genovesio, Aldo ; Jazayeri, Mehrdad ; Romo, Ranulfo ; Salzman, C. Daniel ; Shadlen, Michael N. ; Fusi, Stefano</creator><creatorcontrib>Cueva, Christopher J. ; Saez, Alex ; Marcos, Encarni ; Genovesio, Aldo ; Jazayeri, Mehrdad ; Romo, Ranulfo ; Salzman, C. Daniel ; Shadlen, Michael N. ; Fusi, Stefano</creatorcontrib><description>Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1915984117</identifier><identifier>PMID: 32859756</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Back propagation ; Back propagation networks ; Biological Sciences ; Brain - physiology ; Brain Mapping - methods ; Constraint modelling ; Firing rate ; Memory, Short-Term - physiology ; Nerve Net - physiology ; Neural networks ; Neural Networks, Computer ; Neurons - physiology ; Primates ; Short term memory ; Timing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (37), p.23021-23032</ispartof><rights>Copyright National Academy of Sciences Sep 15, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-ad4c355d80193557b65e79e8f263d432e82daa50643b1a0ec4f2547f3af9d4ac3</citedby><cites>FETCH-LOGICAL-c443t-ad4c355d80193557b65e79e8f263d432e82daa50643b1a0ec4f2547f3af9d4ac3</cites><orcidid>0000-0002-3035-6652 ; 0000-0002-9764-6961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969233$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969233$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32859756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cueva, Christopher J.</creatorcontrib><creatorcontrib>Saez, Alex</creatorcontrib><creatorcontrib>Marcos, Encarni</creatorcontrib><creatorcontrib>Genovesio, Aldo</creatorcontrib><creatorcontrib>Jazayeri, Mehrdad</creatorcontrib><creatorcontrib>Romo, Ranulfo</creatorcontrib><creatorcontrib>Salzman, C. Daniel</creatorcontrib><creatorcontrib>Shadlen, Michael N.</creatorcontrib><creatorcontrib>Fusi, Stefano</creatorcontrib><title>Low-dimensional dynamics for working memory and time encoding</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data.</description><subject>Animals</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Biological Sciences</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Constraint modelling</subject><subject>Firing rate</subject><subject>Memory, Short-Term - physiology</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurons - physiology</subject><subject>Primates</subject><subject>Short term memory</subject><subject>Timing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLAzEUhYMoWh9rV8qAGzejeU6ShYKILyi40XVIk0ydOpPUZGrpvzeltT5Wd3G-e7j3HACOEbxAkJPLqdfpAknEpKAI8S0wQFCisqISboMBhJiXgmK6B_ZTmkAIJRNwF-wRLJjkrBqAq2GYl7bpnE9N8Lot7MLrrjGpqEMs5iG-N35cdK4LcVFob4s-s4XzJtgsHIKdWrfJHa3nAXi9v3u5fSyHzw9PtzfD0lBK-lJbaghjVkAk8-SjijkunahxRSwl2AlstWawomSENHSG1phRXhNdS0u1IQfgeuU7nY06Z43zfdStmsam03Ghgm7UX8U3b2ocPhVnOQKGs8H52iCGj5lLveqaZFzbau_CLClMiai4IBxl9OwfOgmzmKNZUpQTyDKaqcsVZWJIKbp6cwyCalmNWlajfqrJG6e_f9jw311k4GQFTFIf4kbHlawkJoR8AX6ilEo</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Cueva, Christopher J.</creator><creator>Saez, Alex</creator><creator>Marcos, Encarni</creator><creator>Genovesio, Aldo</creator><creator>Jazayeri, Mehrdad</creator><creator>Romo, Ranulfo</creator><creator>Salzman, C. Daniel</creator><creator>Shadlen, Michael N.</creator><creator>Fusi, Stefano</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3035-6652</orcidid><orcidid>https://orcid.org/0000-0002-9764-6961</orcidid></search><sort><creationdate>20200915</creationdate><title>Low-dimensional dynamics for working memory and time encoding</title><author>Cueva, Christopher J. ; Saez, Alex ; Marcos, Encarni ; Genovesio, Aldo ; Jazayeri, Mehrdad ; Romo, Ranulfo ; Salzman, C. Daniel ; Shadlen, Michael N. ; Fusi, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-ad4c355d80193557b65e79e8f263d432e82daa50643b1a0ec4f2547f3af9d4ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Biological Sciences</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Constraint modelling</topic><topic>Firing rate</topic><topic>Memory, Short-Term - physiology</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurons - physiology</topic><topic>Primates</topic><topic>Short term memory</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cueva, Christopher J.</creatorcontrib><creatorcontrib>Saez, Alex</creatorcontrib><creatorcontrib>Marcos, Encarni</creatorcontrib><creatorcontrib>Genovesio, Aldo</creatorcontrib><creatorcontrib>Jazayeri, Mehrdad</creatorcontrib><creatorcontrib>Romo, Ranulfo</creatorcontrib><creatorcontrib>Salzman, C. Daniel</creatorcontrib><creatorcontrib>Shadlen, Michael N.</creatorcontrib><creatorcontrib>Fusi, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cueva, Christopher J.</au><au>Saez, Alex</au><au>Marcos, Encarni</au><au>Genovesio, Aldo</au><au>Jazayeri, Mehrdad</au><au>Romo, Ranulfo</au><au>Salzman, C. Daniel</au><au>Shadlen, Michael N.</au><au>Fusi, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-dimensional dynamics for working memory and time encoding</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-09-15</date><risdate>2020</risdate><volume>117</volume><issue>37</issue><spage>23021</spage><epage>23032</epage><pages>23021-23032</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32859756</pmid><doi>10.1073/pnas.1915984117</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3035-6652</orcidid><orcidid>https://orcid.org/0000-0002-9764-6961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (37), p.23021-23032
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502752
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Back propagation
Back propagation networks
Biological Sciences
Brain - physiology
Brain Mapping - methods
Constraint modelling
Firing rate
Memory, Short-Term - physiology
Nerve Net - physiology
Neural networks
Neural Networks, Computer
Neurons - physiology
Primates
Short term memory
Timing
title Low-dimensional dynamics for working memory and time encoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-dimensional%20dynamics%20for%20working%20memory%20and%20time%20encoding&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cueva,%20Christopher%20J.&rft.date=2020-09-15&rft.volume=117&rft.issue=37&rft.spage=23021&rft.epage=23032&rft.pages=23021-23032&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1915984117&rft_dat=%3Cjstor_pubme%3E26969233%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447305386&rft_id=info:pmid/32859756&rft_jstor_id=26969233&rfr_iscdi=true