Mechanism for analogous illusory motion perception in flies and humans

Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (37), p.23044-23053
Hauptverfasser: Agrochao, Margarida, Tanaka, Ryosuke, Salazar-Gatzimas, Emilio, Clark, Damon A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23053
container_issue 37
container_start_page 23044
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Agrochao, Margarida
Tanaka, Ryosuke
Salazar-Gatzimas, Emilio
Clark, Damon A.
description Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons’ responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly’s illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly’s may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.
doi_str_mv 10.1073/pnas.2002937117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969235</jstor_id><sourcerecordid>26969235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-abcaf5cecb16866ff6c7d2d35c966fa00cedbc512a910ffaf73072a77a6bb5543</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa0KVLa0556KInHpJeCP2I4vSBWCUgnEpT1bE8dmvUrsYCdI_Pf1dunScrI98_PTzHsIfSb4jGDJzqcA-YxiTBWThMh3aEWwIrVoFD5Aq1KXddvQ5gh9yHmDMVa8xe_REaMtU4w2K3R9Z80ags9j5WKqIMAQH-KSKz8MS47puRrj7GOoJpuMnf5cfajc4G0udF-tlxFC_ogOHQzZfno5j9Gv66uflzf17f33H5ffbmvDsZpr6Aw4bqzpiGiFcE4Y2dOecaPKCzA2tu8MJxQUwc6BkwxLClKC6DrOG3aMLna609KNtjc2zAkGPSU_QnrWEbz-vxP8Wj_EJy158aJpi8DXF4EUHxebZz36bOwwQLBlbU2bYiQlVImCnr5BN3FJxaAt1ZTJOOWyUOc7yqSYc7JuPwzBepuR3makXzMqP07-3WHP_w2lAF92wCbPMe37VCihKOPsN2x1mO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447305257</pqid></control><display><type>article</type><title>Mechanism for analogous illusory motion perception in flies and humans</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>JSTOR Complete Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Agrochao, Margarida ; Tanaka, Ryosuke ; Salazar-Gatzimas, Emilio ; Clark, Damon A.</creator><creatorcontrib>Agrochao, Margarida ; Tanaka, Ryosuke ; Salazar-Gatzimas, Emilio ; Clark, Damon A.</creatorcontrib><description>Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons’ responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly’s illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly’s may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2002937117</identifier><identifier>PMID: 32839324</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Calcium imaging ; Dark adaptation ; Drosophila ; Drosophila - physiology ; Fruit flies ; Humans ; Illusions - physiology ; In vivo methods and tests ; Insects ; Motion ; Motion detection ; Motion perception ; Motion Perception - physiology ; Neurons ; Neurons - physiology ; Polarity ; Vertebrates ; Vision, Ocular - physiology ; Visual pathways ; Visual Pathways - physiology ; Visual perception</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (37), p.23044-23053</ispartof><rights>Copyright National Academy of Sciences Sep 15, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-abcaf5cecb16866ff6c7d2d35c966fa00cedbc512a910ffaf73072a77a6bb5543</citedby><cites>FETCH-LOGICAL-c509t-abcaf5cecb16866ff6c7d2d35c966fa00cedbc512a910ffaf73072a77a6bb5543</cites><orcidid>0000-0001-7837-2136 ; 0000-0001-6329-7890 ; 0000-0001-8487-700X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969235$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969235$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32839324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agrochao, Margarida</creatorcontrib><creatorcontrib>Tanaka, Ryosuke</creatorcontrib><creatorcontrib>Salazar-Gatzimas, Emilio</creatorcontrib><creatorcontrib>Clark, Damon A.</creatorcontrib><title>Mechanism for analogous illusory motion perception in flies and humans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons’ responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly’s illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly’s may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium imaging</subject><subject>Dark adaptation</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Fruit flies</subject><subject>Humans</subject><subject>Illusions - physiology</subject><subject>In vivo methods and tests</subject><subject>Insects</subject><subject>Motion</subject><subject>Motion detection</subject><subject>Motion perception</subject><subject>Motion Perception - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Polarity</subject><subject>Vertebrates</subject><subject>Vision, Ocular - physiology</subject><subject>Visual pathways</subject><subject>Visual Pathways - physiology</subject><subject>Visual perception</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxa0KVLa0556KInHpJeCP2I4vSBWCUgnEpT1bE8dmvUrsYCdI_Pf1dunScrI98_PTzHsIfSb4jGDJzqcA-YxiTBWThMh3aEWwIrVoFD5Aq1KXddvQ5gh9yHmDMVa8xe_REaMtU4w2K3R9Z80ags9j5WKqIMAQH-KSKz8MS47puRrj7GOoJpuMnf5cfajc4G0udF-tlxFC_ogOHQzZfno5j9Gv66uflzf17f33H5ffbmvDsZpr6Aw4bqzpiGiFcE4Y2dOecaPKCzA2tu8MJxQUwc6BkwxLClKC6DrOG3aMLna609KNtjc2zAkGPSU_QnrWEbz-vxP8Wj_EJy158aJpi8DXF4EUHxebZz36bOwwQLBlbU2bYiQlVImCnr5BN3FJxaAt1ZTJOOWyUOc7yqSYc7JuPwzBepuR3makXzMqP07-3WHP_w2lAF92wCbPMe37VCihKOPsN2x1mO0</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Agrochao, Margarida</creator><creator>Tanaka, Ryosuke</creator><creator>Salazar-Gatzimas, Emilio</creator><creator>Clark, Damon A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7837-2136</orcidid><orcidid>https://orcid.org/0000-0001-6329-7890</orcidid><orcidid>https://orcid.org/0000-0001-8487-700X</orcidid></search><sort><creationdate>20200915</creationdate><title>Mechanism for analogous illusory motion perception in flies and humans</title><author>Agrochao, Margarida ; Tanaka, Ryosuke ; Salazar-Gatzimas, Emilio ; Clark, Damon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-abcaf5cecb16866ff6c7d2d35c966fa00cedbc512a910ffaf73072a77a6bb5543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium imaging</topic><topic>Dark adaptation</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Fruit flies</topic><topic>Humans</topic><topic>Illusions - physiology</topic><topic>In vivo methods and tests</topic><topic>Insects</topic><topic>Motion</topic><topic>Motion detection</topic><topic>Motion perception</topic><topic>Motion Perception - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Polarity</topic><topic>Vertebrates</topic><topic>Vision, Ocular - physiology</topic><topic>Visual pathways</topic><topic>Visual Pathways - physiology</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrochao, Margarida</creatorcontrib><creatorcontrib>Tanaka, Ryosuke</creatorcontrib><creatorcontrib>Salazar-Gatzimas, Emilio</creatorcontrib><creatorcontrib>Clark, Damon A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrochao, Margarida</au><au>Tanaka, Ryosuke</au><au>Salazar-Gatzimas, Emilio</au><au>Clark, Damon A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism for analogous illusory motion perception in flies and humans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-09-15</date><risdate>2020</risdate><volume>117</volume><issue>37</issue><spage>23044</spage><epage>23053</epage><pages>23044-23053</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Visual motion detection is one of the most important computations performed by visual circuits. Yet, we perceive vivid illusory motion in stationary, periodic luminance gradients that contain no true motion. This illusion is shared by diverse vertebrate species, but theories proposed to explain this illusion have remained difficult to test. Here, we demonstrate that in the fruit fly Drosophila, the illusory motion percept is generated by unbalanced contributions of direction-selective neurons’ responses to stationary edges. First, we found that flies, like humans, perceive sustained motion in the stationary gradients. The percept was abolished when the elementary motion detector neurons T4 and T5 were silenced. In vivo calcium imaging revealed that T4 and T5 neurons encode the location and polarity of stationary edges. Furthermore, our proposed mechanistic model allowed us to predictably manipulate both the magnitude and direction of the fly’s illusory percept by selectively silencing either T4 or T5 neurons. Interestingly, human brains possess the same mechanistic ingredients that drive our model in flies. When we adapted human observers to moving light edges or dark edges, we could manipulate the magnitude and direction of their percepts as well, suggesting that mechanisms similar to the fly’s may also underlie this illusion in humans. By taking a comparative approach that exploits Drosophila neurogenetics, our results provide a causal, mechanistic account for a long-known visual illusion. These results argue that this illusion arises from architectures for motion detection that are shared across phyla.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32839324</pmid><doi>10.1073/pnas.2002937117</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7837-2136</orcidid><orcidid>https://orcid.org/0000-0001-6329-7890</orcidid><orcidid>https://orcid.org/0000-0001-8487-700X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (37), p.23044-23053
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502748
source PubMed (Medline); MEDLINE; JSTOR Complete Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Calcium imaging
Dark adaptation
Drosophila
Drosophila - physiology
Fruit flies
Humans
Illusions - physiology
In vivo methods and tests
Insects
Motion
Motion detection
Motion perception
Motion Perception - physiology
Neurons
Neurons - physiology
Polarity
Vertebrates
Vision, Ocular - physiology
Visual pathways
Visual Pathways - physiology
Visual perception
title Mechanism for analogous illusory motion perception in flies and humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20for%20analogous%20illusory%20motion%20perception%20in%20flies%20and%20humans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Agrochao,%20Margarida&rft.date=2020-09-15&rft.volume=117&rft.issue=37&rft.spage=23044&rft.epage=23053&rft.pages=23044-23053&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2002937117&rft_dat=%3Cjstor_pubme%3E26969235%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447305257&rft_id=info:pmid/32839324&rft_jstor_id=26969235&rfr_iscdi=true