Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms
Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules 1 . LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-...
Gespeichert in:
Veröffentlicht in: | Nature metabolism 2020-09, Vol.2 (9), p.873-881 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 881 |
---|---|
container_issue | 9 |
container_start_page | 873 |
container_title | Nature metabolism |
container_volume | 2 |
creator | Pinkosky, Stephen L. Scott, John W. Desjardins, Eric M. Smith, Brennan K. Day, Emily A. Ford, Rebecca J. Langendorf, Christopher G. Ling, Naomi X. Y. Nero, Tracy L. Loh, Kim Galic, Sandra Hoque, Ashfaqul Smiles, William J. Ngoei, Kevin R. W. Parker, Michael W. Yan, Yan Melcher, Karsten Kemp, Bruce E. Oakhill, Jonathan S. Steinberg, Gregory R. |
description | Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules
1
. LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for β-oxidation
2
–
6
. Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) β1–containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the β-subunit. β1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK β1–selective activators and promote LCFA oxidation.
Steinberg and colleagues show that long-chain fatty acyl-CoA esters are endogenous ligands for the drug-binding domain of AMPK β1–containing isoforms, and that such binding is critical for enhancement of fatty acid oxidation. These data may help explain how AMPK integrates responses to ketogenic diets, fasting or endurance exercise across distinct tissues in the absence of changes in adenine nucleotides. |
doi_str_mv | 10.1038/s42255-020-0245-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428064366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-602f6dd0b3a26d8acfecaf43d41190a85f2ab6f23e5f744087de8f346ea42b0b3</originalsourceid><addsrcrecordid>eNp9kc9O3DAQxi0EKgh4gF6Qj72ktSe2k71UWq3oH7GIHtqzO3HsxciJqZ0g7Wv1QfpMeLWA6IWDZUvz-76Z8UfIe84-cla3n7IAkLJiwMoRsoIDcgISoJIth8NX72NynvMdYww4FxwW78hxDQ1fyFqdkN_rOG4qc4t-pA6naUvRbEO1iktq82RTpslu5oCTpYOdsIvB54E-eKQYQtwR3lATxynFQKOjy-sfV_TfX059ji6mIZ-RI4ch2_On-5T8-nL5c_WtWt98_b5arisjBEyVYuBU37OuRlB9i8ZZg07UveB8wbCVDrBTDmorXSMEa5vetq4WyqKArshOyee97_3cDbY3toyEQd8nP2Da6ohe_18Z_a3exAfdSAZSNMXgw5NBin_msrwefDY2BBxtnLMGAS1TolaqoHyPmhRzTta9tOFM78LR-3B0CUfvwtFQNBev53tRPEdRANgDuZTGjU36Ls5pLH_2husjMxecTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428064366</pqid></control><display><type>article</type><title>Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pinkosky, Stephen L. ; Scott, John W. ; Desjardins, Eric M. ; Smith, Brennan K. ; Day, Emily A. ; Ford, Rebecca J. ; Langendorf, Christopher G. ; Ling, Naomi X. Y. ; Nero, Tracy L. ; Loh, Kim ; Galic, Sandra ; Hoque, Ashfaqul ; Smiles, William J. ; Ngoei, Kevin R. W. ; Parker, Michael W. ; Yan, Yan ; Melcher, Karsten ; Kemp, Bruce E. ; Oakhill, Jonathan S. ; Steinberg, Gregory R.</creator><creatorcontrib>Pinkosky, Stephen L. ; Scott, John W. ; Desjardins, Eric M. ; Smith, Brennan K. ; Day, Emily A. ; Ford, Rebecca J. ; Langendorf, Christopher G. ; Ling, Naomi X. Y. ; Nero, Tracy L. ; Loh, Kim ; Galic, Sandra ; Hoque, Ashfaqul ; Smiles, William J. ; Ngoei, Kevin R. W. ; Parker, Michael W. ; Yan, Yan ; Melcher, Karsten ; Kemp, Bruce E. ; Oakhill, Jonathan S. ; Steinberg, Gregory R.</creatorcontrib><description>Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules
1
. LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for β-oxidation
2
–
6
. Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) β1–containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the β-subunit. β1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK β1–selective activators and promote LCFA oxidation.
Steinberg and colleagues show that long-chain fatty acyl-CoA esters are endogenous ligands for the drug-binding domain of AMPK β1–containing isoforms, and that such binding is critical for enhancement of fatty acid oxidation. These data may help explain how AMPK integrates responses to ketogenic diets, fasting or endurance exercise across distinct tissues in the absence of changes in adenine nucleotides.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-020-0245-2</identifier><identifier>PMID: 32719536</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 13/95 ; 14 ; 631/443/319 ; 631/45 ; 631/80/86/2369 ; 64/60 ; 82/81 ; 82/83 ; 96/106 ; 96/95 ; Acyl Coenzyme A - physiology ; Allosteric Regulation - physiology ; AMP-Activated Protein Kinases - chemistry ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Biomedical and Life Sciences ; Catalytic Domain ; Esters ; Isoenzymes - chemistry ; Isoenzymes - metabolism ; Letter ; Life Sciences ; Male ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Mutation - genetics ; Oxidation-Reduction ; Palmitoyl Coenzyme A - metabolism ; Phosphorylation ; Pyrones - pharmacology ; Thiophenes - pharmacology</subject><ispartof>Nature metabolism, 2020-09, Vol.2 (9), p.873-881</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-602f6dd0b3a26d8acfecaf43d41190a85f2ab6f23e5f744087de8f346ea42b0b3</citedby><cites>FETCH-LOGICAL-c442t-602f6dd0b3a26d8acfecaf43d41190a85f2ab6f23e5f744087de8f346ea42b0b3</cites><orcidid>0000-0002-6846-689X ; 0000-0002-9125-4027 ; 0000-0002-1896-9798 ; 0000-0001-6240-4092 ; 0000-0001-5425-8275 ; 0000-0002-3101-1138 ; 0000-0002-9475-1440 ; 0000-0003-3245-5715 ; 0000-0002-3393-1843 ; 0000-0003-2384-2983 ; 0000-0001-6735-5082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-020-0245-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-020-0245-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32719536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinkosky, Stephen L.</creatorcontrib><creatorcontrib>Scott, John W.</creatorcontrib><creatorcontrib>Desjardins, Eric M.</creatorcontrib><creatorcontrib>Smith, Brennan K.</creatorcontrib><creatorcontrib>Day, Emily A.</creatorcontrib><creatorcontrib>Ford, Rebecca J.</creatorcontrib><creatorcontrib>Langendorf, Christopher G.</creatorcontrib><creatorcontrib>Ling, Naomi X. Y.</creatorcontrib><creatorcontrib>Nero, Tracy L.</creatorcontrib><creatorcontrib>Loh, Kim</creatorcontrib><creatorcontrib>Galic, Sandra</creatorcontrib><creatorcontrib>Hoque, Ashfaqul</creatorcontrib><creatorcontrib>Smiles, William J.</creatorcontrib><creatorcontrib>Ngoei, Kevin R. W.</creatorcontrib><creatorcontrib>Parker, Michael W.</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Melcher, Karsten</creatorcontrib><creatorcontrib>Kemp, Bruce E.</creatorcontrib><creatorcontrib>Oakhill, Jonathan S.</creatorcontrib><creatorcontrib>Steinberg, Gregory R.</creatorcontrib><title>Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules
1
. LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for β-oxidation
2
–
6
. Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) β1–containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the β-subunit. β1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK β1–selective activators and promote LCFA oxidation.
Steinberg and colleagues show that long-chain fatty acyl-CoA esters are endogenous ligands for the drug-binding domain of AMPK β1–containing isoforms, and that such binding is critical for enhancement of fatty acid oxidation. These data may help explain how AMPK integrates responses to ketogenic diets, fasting or endurance exercise across distinct tissues in the absence of changes in adenine nucleotides.</description><subject>101/58</subject><subject>13/95</subject><subject>14</subject><subject>631/443/319</subject><subject>631/45</subject><subject>631/80/86/2369</subject><subject>64/60</subject><subject>82/81</subject><subject>82/83</subject><subject>96/106</subject><subject>96/95</subject><subject>Acyl Coenzyme A - physiology</subject><subject>Allosteric Regulation - physiology</subject><subject>AMP-Activated Protein Kinases - chemistry</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Catalytic Domain</subject><subject>Esters</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - metabolism</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Molecular</subject><subject>Mutation - genetics</subject><subject>Oxidation-Reduction</subject><subject>Palmitoyl Coenzyme A - metabolism</subject><subject>Phosphorylation</subject><subject>Pyrones - pharmacology</subject><subject>Thiophenes - pharmacology</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9O3DAQxi0EKgh4gF6Qj72ktSe2k71UWq3oH7GIHtqzO3HsxciJqZ0g7Wv1QfpMeLWA6IWDZUvz-76Z8UfIe84-cla3n7IAkLJiwMoRsoIDcgISoJIth8NX72NynvMdYww4FxwW78hxDQ1fyFqdkN_rOG4qc4t-pA6naUvRbEO1iktq82RTpslu5oCTpYOdsIvB54E-eKQYQtwR3lATxynFQKOjy-sfV_TfX059ji6mIZ-RI4ch2_On-5T8-nL5c_WtWt98_b5arisjBEyVYuBU37OuRlB9i8ZZg07UveB8wbCVDrBTDmorXSMEa5vetq4WyqKArshOyee97_3cDbY3toyEQd8nP2Da6ohe_18Z_a3exAfdSAZSNMXgw5NBin_msrwefDY2BBxtnLMGAS1TolaqoHyPmhRzTta9tOFM78LR-3B0CUfvwtFQNBev53tRPEdRANgDuZTGjU36Ls5pLH_2husjMxecTw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Pinkosky, Stephen L.</creator><creator>Scott, John W.</creator><creator>Desjardins, Eric M.</creator><creator>Smith, Brennan K.</creator><creator>Day, Emily A.</creator><creator>Ford, Rebecca J.</creator><creator>Langendorf, Christopher G.</creator><creator>Ling, Naomi X. Y.</creator><creator>Nero, Tracy L.</creator><creator>Loh, Kim</creator><creator>Galic, Sandra</creator><creator>Hoque, Ashfaqul</creator><creator>Smiles, William J.</creator><creator>Ngoei, Kevin R. W.</creator><creator>Parker, Michael W.</creator><creator>Yan, Yan</creator><creator>Melcher, Karsten</creator><creator>Kemp, Bruce E.</creator><creator>Oakhill, Jonathan S.</creator><creator>Steinberg, Gregory R.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6846-689X</orcidid><orcidid>https://orcid.org/0000-0002-9125-4027</orcidid><orcidid>https://orcid.org/0000-0002-1896-9798</orcidid><orcidid>https://orcid.org/0000-0001-6240-4092</orcidid><orcidid>https://orcid.org/0000-0001-5425-8275</orcidid><orcidid>https://orcid.org/0000-0002-3101-1138</orcidid><orcidid>https://orcid.org/0000-0002-9475-1440</orcidid><orcidid>https://orcid.org/0000-0003-3245-5715</orcidid><orcidid>https://orcid.org/0000-0002-3393-1843</orcidid><orcidid>https://orcid.org/0000-0003-2384-2983</orcidid><orcidid>https://orcid.org/0000-0001-6735-5082</orcidid></search><sort><creationdate>20200901</creationdate><title>Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms</title><author>Pinkosky, Stephen L. ; Scott, John W. ; Desjardins, Eric M. ; Smith, Brennan K. ; Day, Emily A. ; Ford, Rebecca J. ; Langendorf, Christopher G. ; Ling, Naomi X. Y. ; Nero, Tracy L. ; Loh, Kim ; Galic, Sandra ; Hoque, Ashfaqul ; Smiles, William J. ; Ngoei, Kevin R. W. ; Parker, Michael W. ; Yan, Yan ; Melcher, Karsten ; Kemp, Bruce E. ; Oakhill, Jonathan S. ; Steinberg, Gregory R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-602f6dd0b3a26d8acfecaf43d41190a85f2ab6f23e5f744087de8f346ea42b0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/58</topic><topic>13/95</topic><topic>14</topic><topic>631/443/319</topic><topic>631/45</topic><topic>631/80/86/2369</topic><topic>64/60</topic><topic>82/81</topic><topic>82/83</topic><topic>96/106</topic><topic>96/95</topic><topic>Acyl Coenzyme A - physiology</topic><topic>Allosteric Regulation - physiology</topic><topic>AMP-Activated Protein Kinases - chemistry</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Catalytic Domain</topic><topic>Esters</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - metabolism</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Molecular</topic><topic>Mutation - genetics</topic><topic>Oxidation-Reduction</topic><topic>Palmitoyl Coenzyme A - metabolism</topic><topic>Phosphorylation</topic><topic>Pyrones - pharmacology</topic><topic>Thiophenes - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinkosky, Stephen L.</creatorcontrib><creatorcontrib>Scott, John W.</creatorcontrib><creatorcontrib>Desjardins, Eric M.</creatorcontrib><creatorcontrib>Smith, Brennan K.</creatorcontrib><creatorcontrib>Day, Emily A.</creatorcontrib><creatorcontrib>Ford, Rebecca J.</creatorcontrib><creatorcontrib>Langendorf, Christopher G.</creatorcontrib><creatorcontrib>Ling, Naomi X. Y.</creatorcontrib><creatorcontrib>Nero, Tracy L.</creatorcontrib><creatorcontrib>Loh, Kim</creatorcontrib><creatorcontrib>Galic, Sandra</creatorcontrib><creatorcontrib>Hoque, Ashfaqul</creatorcontrib><creatorcontrib>Smiles, William J.</creatorcontrib><creatorcontrib>Ngoei, Kevin R. W.</creatorcontrib><creatorcontrib>Parker, Michael W.</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Melcher, Karsten</creatorcontrib><creatorcontrib>Kemp, Bruce E.</creatorcontrib><creatorcontrib>Oakhill, Jonathan S.</creatorcontrib><creatorcontrib>Steinberg, Gregory R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinkosky, Stephen L.</au><au>Scott, John W.</au><au>Desjardins, Eric M.</au><au>Smith, Brennan K.</au><au>Day, Emily A.</au><au>Ford, Rebecca J.</au><au>Langendorf, Christopher G.</au><au>Ling, Naomi X. Y.</au><au>Nero, Tracy L.</au><au>Loh, Kim</au><au>Galic, Sandra</au><au>Hoque, Ashfaqul</au><au>Smiles, William J.</au><au>Ngoei, Kevin R. W.</au><au>Parker, Michael W.</au><au>Yan, Yan</au><au>Melcher, Karsten</au><au>Kemp, Bruce E.</au><au>Oakhill, Jonathan S.</au><au>Steinberg, Gregory R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>2</volume><issue>9</issue><spage>873</spage><epage>881</epage><pages>873-881</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules
1
. LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for β-oxidation
2
–
6
. Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) β1–containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the β-subunit. β1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK β1–selective activators and promote LCFA oxidation.
Steinberg and colleagues show that long-chain fatty acyl-CoA esters are endogenous ligands for the drug-binding domain of AMPK β1–containing isoforms, and that such binding is critical for enhancement of fatty acid oxidation. These data may help explain how AMPK integrates responses to ketogenic diets, fasting or endurance exercise across distinct tissues in the absence of changes in adenine nucleotides.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32719536</pmid><doi>10.1038/s42255-020-0245-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6846-689X</orcidid><orcidid>https://orcid.org/0000-0002-9125-4027</orcidid><orcidid>https://orcid.org/0000-0002-1896-9798</orcidid><orcidid>https://orcid.org/0000-0001-6240-4092</orcidid><orcidid>https://orcid.org/0000-0001-5425-8275</orcidid><orcidid>https://orcid.org/0000-0002-3101-1138</orcidid><orcidid>https://orcid.org/0000-0002-9475-1440</orcidid><orcidid>https://orcid.org/0000-0003-3245-5715</orcidid><orcidid>https://orcid.org/0000-0002-3393-1843</orcidid><orcidid>https://orcid.org/0000-0003-2384-2983</orcidid><orcidid>https://orcid.org/0000-0001-6735-5082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-5812 |
ispartof | Nature metabolism, 2020-09, Vol.2 (9), p.873-881 |
issn | 2522-5812 2522-5812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502547 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 101/58 13/95 14 631/443/319 631/45 631/80/86/2369 64/60 82/81 82/83 96/106 96/95 Acyl Coenzyme A - physiology Allosteric Regulation - physiology AMP-Activated Protein Kinases - chemistry AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism Animals Biomedical and Life Sciences Catalytic Domain Esters Isoenzymes - chemistry Isoenzymes - metabolism Letter Life Sciences Male Mice Mice, Inbred C57BL Models, Molecular Mutation - genetics Oxidation-Reduction Palmitoyl Coenzyme A - metabolism Phosphorylation Pyrones - pharmacology Thiophenes - pharmacology |
title | Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-chain%20fatty%20acyl-CoA%20esters%20regulate%20metabolism%20via%20allosteric%20control%20of%20AMPK%20%CE%B21%20isoforms&rft.jtitle=Nature%20metabolism&rft.au=Pinkosky,%20Stephen%20L.&rft.date=2020-09-01&rft.volume=2&rft.issue=9&rft.spage=873&rft.epage=881&rft.pages=873-881&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-020-0245-2&rft_dat=%3Cproquest_pubme%3E2428064366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428064366&rft_id=info:pmid/32719536&rfr_iscdi=true |