Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms

Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules 1 . LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature metabolism 2020-09, Vol.2 (9), p.873-881
Hauptverfasser: Pinkosky, Stephen L., Scott, John W., Desjardins, Eric M., Smith, Brennan K., Day, Emily A., Ford, Rebecca J., Langendorf, Christopher G., Ling, Naomi X. Y., Nero, Tracy L., Loh, Kim, Galic, Sandra, Hoque, Ashfaqul, Smiles, William J., Ngoei, Kevin R. W., Parker, Michael W., Yan, Yan, Melcher, Karsten, Kemp, Bruce E., Oakhill, Jonathan S., Steinberg, Gregory R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 881
container_issue 9
container_start_page 873
container_title Nature metabolism
container_volume 2
creator Pinkosky, Stephen L.
Scott, John W.
Desjardins, Eric M.
Smith, Brennan K.
Day, Emily A.
Ford, Rebecca J.
Langendorf, Christopher G.
Ling, Naomi X. Y.
Nero, Tracy L.
Loh, Kim
Galic, Sandra
Hoque, Ashfaqul
Smiles, William J.
Ngoei, Kevin R. W.
Parker, Michael W.
Yan, Yan
Melcher, Karsten
Kemp, Bruce E.
Oakhill, Jonathan S.
Steinberg, Gregory R.
description Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules 1 . LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for β-oxidation 2 – 6 . Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) β1–containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the β-subunit. β1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK β1–selective activators and promote LCFA oxidation. Steinberg and colleagues show that long-chain fatty acyl-CoA esters are endogenous ligands for the drug-binding domain of AMPK β1–containing isoforms, and that such binding is critical for enhancement of fatty acid oxidation. These data may help explain how AMPK integrates responses to ketogenic diets, fasting or endurance exercise across distinct tissues in the absence of changes in adenine nucleotides.
doi_str_mv 10.1038/s42255-020-0245-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428064366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-602f6dd0b3a26d8acfecaf43d41190a85f2ab6f23e5f744087de8f346ea42b0b3</originalsourceid><addsrcrecordid>eNp9kc9O3DAQxi0EKgh4gF6Qj72ktSe2k71UWq3oH7GIHtqzO3HsxciJqZ0g7Wv1QfpMeLWA6IWDZUvz-76Z8UfIe84-cla3n7IAkLJiwMoRsoIDcgISoJIth8NX72NynvMdYww4FxwW78hxDQ1fyFqdkN_rOG4qc4t-pA6naUvRbEO1iktq82RTpslu5oCTpYOdsIvB54E-eKQYQtwR3lATxynFQKOjy-sfV_TfX059ji6mIZ-RI4ch2_On-5T8-nL5c_WtWt98_b5arisjBEyVYuBU37OuRlB9i8ZZg07UveB8wbCVDrBTDmorXSMEa5vetq4WyqKArshOyee97_3cDbY3toyEQd8nP2Da6ohe_18Z_a3exAfdSAZSNMXgw5NBin_msrwefDY2BBxtnLMGAS1TolaqoHyPmhRzTta9tOFM78LR-3B0CUfvwtFQNBev53tRPEdRANgDuZTGjU36Ls5pLH_2husjMxecTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428064366</pqid></control><display><type>article</type><title>Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pinkosky, Stephen L. ; Scott, John W. ; Desjardins, Eric M. ; Smith, Brennan K. ; Day, Emily A. ; Ford, Rebecca J. ; Langendorf, Christopher G. ; Ling, Naomi X. Y. ; Nero, Tracy L. ; Loh, Kim ; Galic, Sandra ; Hoque, Ashfaqul ; Smiles, William J. ; Ngoei, Kevin R. W. ; Parker, Michael W. ; Yan, Yan ; Melcher, Karsten ; Kemp, Bruce E. ; Oakhill, Jonathan S. ; Steinberg, Gregory R.</creator><creatorcontrib>Pinkosky, Stephen L. ; Scott, John W. ; Desjardins, Eric M. ; Smith, Brennan K. ; Day, Emily A. ; Ford, Rebecca J. ; Langendorf, Christopher G. ; Ling, Naomi X. Y. ; Nero, Tracy L. ; Loh, Kim ; Galic, Sandra ; Hoque, Ashfaqul ; Smiles, William J. ; Ngoei, Kevin R. W. ; Parker, Michael W. ; Yan, Yan ; Melcher, Karsten ; Kemp, Bruce E. ; Oakhill, Jonathan S. ; Steinberg, Gregory R.</creatorcontrib><description>Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules 1 . LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for β-oxidation 2 – 6 . Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) β1–containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the β-subunit. β1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK β1–selective activators and promote LCFA oxidation. Steinberg and colleagues show that long-chain fatty acyl-CoA esters are endogenous ligands for the drug-binding domain of AMPK β1–containing isoforms, and that such binding is critical for enhancement of fatty acid oxidation. These data may help explain how AMPK integrates responses to ketogenic diets, fasting or endurance exercise across distinct tissues in the absence of changes in adenine nucleotides.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-020-0245-2</identifier><identifier>PMID: 32719536</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 13/95 ; 14 ; 631/443/319 ; 631/45 ; 631/80/86/2369 ; 64/60 ; 82/81 ; 82/83 ; 96/106 ; 96/95 ; Acyl Coenzyme A - physiology ; Allosteric Regulation - physiology ; AMP-Activated Protein Kinases - chemistry ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Biomedical and Life Sciences ; Catalytic Domain ; Esters ; Isoenzymes - chemistry ; Isoenzymes - metabolism ; Letter ; Life Sciences ; Male ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Mutation - genetics ; Oxidation-Reduction ; Palmitoyl Coenzyme A - metabolism ; Phosphorylation ; Pyrones - pharmacology ; Thiophenes - pharmacology</subject><ispartof>Nature metabolism, 2020-09, Vol.2 (9), p.873-881</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-602f6dd0b3a26d8acfecaf43d41190a85f2ab6f23e5f744087de8f346ea42b0b3</citedby><cites>FETCH-LOGICAL-c442t-602f6dd0b3a26d8acfecaf43d41190a85f2ab6f23e5f744087de8f346ea42b0b3</cites><orcidid>0000-0002-6846-689X ; 0000-0002-9125-4027 ; 0000-0002-1896-9798 ; 0000-0001-6240-4092 ; 0000-0001-5425-8275 ; 0000-0002-3101-1138 ; 0000-0002-9475-1440 ; 0000-0003-3245-5715 ; 0000-0002-3393-1843 ; 0000-0003-2384-2983 ; 0000-0001-6735-5082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-020-0245-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-020-0245-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32719536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinkosky, Stephen L.</creatorcontrib><creatorcontrib>Scott, John W.</creatorcontrib><creatorcontrib>Desjardins, Eric M.</creatorcontrib><creatorcontrib>Smith, Brennan K.</creatorcontrib><creatorcontrib>Day, Emily A.</creatorcontrib><creatorcontrib>Ford, Rebecca J.</creatorcontrib><creatorcontrib>Langendorf, Christopher G.</creatorcontrib><creatorcontrib>Ling, Naomi X. Y.</creatorcontrib><creatorcontrib>Nero, Tracy L.</creatorcontrib><creatorcontrib>Loh, Kim</creatorcontrib><creatorcontrib>Galic, Sandra</creatorcontrib><creatorcontrib>Hoque, Ashfaqul</creatorcontrib><creatorcontrib>Smiles, William J.</creatorcontrib><creatorcontrib>Ngoei, Kevin R. W.</creatorcontrib><creatorcontrib>Parker, Michael W.</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Melcher, Karsten</creatorcontrib><creatorcontrib>Kemp, Bruce E.</creatorcontrib><creatorcontrib>Oakhill, Jonathan S.</creatorcontrib><creatorcontrib>Steinberg, Gregory R.</creatorcontrib><title>Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules 1 . LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for β-oxidation 2 – 6 . Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) β1–containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the β-subunit. β1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK β1–selective activators and promote LCFA oxidation. Steinberg and colleagues show that long-chain fatty acyl-CoA esters are endogenous ligands for the drug-binding domain of AMPK β1–containing isoforms, and that such binding is critical for enhancement of fatty acid oxidation. These data may help explain how AMPK integrates responses to ketogenic diets, fasting or endurance exercise across distinct tissues in the absence of changes in adenine nucleotides.</description><subject>101/58</subject><subject>13/95</subject><subject>14</subject><subject>631/443/319</subject><subject>631/45</subject><subject>631/80/86/2369</subject><subject>64/60</subject><subject>82/81</subject><subject>82/83</subject><subject>96/106</subject><subject>96/95</subject><subject>Acyl Coenzyme A - physiology</subject><subject>Allosteric Regulation - physiology</subject><subject>AMP-Activated Protein Kinases - chemistry</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Catalytic Domain</subject><subject>Esters</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - metabolism</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Molecular</subject><subject>Mutation - genetics</subject><subject>Oxidation-Reduction</subject><subject>Palmitoyl Coenzyme A - metabolism</subject><subject>Phosphorylation</subject><subject>Pyrones - pharmacology</subject><subject>Thiophenes - pharmacology</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9O3DAQxi0EKgh4gF6Qj72ktSe2k71UWq3oH7GIHtqzO3HsxciJqZ0g7Wv1QfpMeLWA6IWDZUvz-76Z8UfIe84-cla3n7IAkLJiwMoRsoIDcgISoJIth8NX72NynvMdYww4FxwW78hxDQ1fyFqdkN_rOG4qc4t-pA6naUvRbEO1iktq82RTpslu5oCTpYOdsIvB54E-eKQYQtwR3lATxynFQKOjy-sfV_TfX059ji6mIZ-RI4ch2_On-5T8-nL5c_WtWt98_b5arisjBEyVYuBU37OuRlB9i8ZZg07UveB8wbCVDrBTDmorXSMEa5vetq4WyqKArshOyee97_3cDbY3toyEQd8nP2Da6ohe_18Z_a3exAfdSAZSNMXgw5NBin_msrwefDY2BBxtnLMGAS1TolaqoHyPmhRzTta9tOFM78LR-3B0CUfvwtFQNBev53tRPEdRANgDuZTGjU36Ls5pLH_2husjMxecTw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Pinkosky, Stephen L.</creator><creator>Scott, John W.</creator><creator>Desjardins, Eric M.</creator><creator>Smith, Brennan K.</creator><creator>Day, Emily A.</creator><creator>Ford, Rebecca J.</creator><creator>Langendorf, Christopher G.</creator><creator>Ling, Naomi X. Y.</creator><creator>Nero, Tracy L.</creator><creator>Loh, Kim</creator><creator>Galic, Sandra</creator><creator>Hoque, Ashfaqul</creator><creator>Smiles, William J.</creator><creator>Ngoei, Kevin R. W.</creator><creator>Parker, Michael W.</creator><creator>Yan, Yan</creator><creator>Melcher, Karsten</creator><creator>Kemp, Bruce E.</creator><creator>Oakhill, Jonathan S.</creator><creator>Steinberg, Gregory R.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6846-689X</orcidid><orcidid>https://orcid.org/0000-0002-9125-4027</orcidid><orcidid>https://orcid.org/0000-0002-1896-9798</orcidid><orcidid>https://orcid.org/0000-0001-6240-4092</orcidid><orcidid>https://orcid.org/0000-0001-5425-8275</orcidid><orcidid>https://orcid.org/0000-0002-3101-1138</orcidid><orcidid>https://orcid.org/0000-0002-9475-1440</orcidid><orcidid>https://orcid.org/0000-0003-3245-5715</orcidid><orcidid>https://orcid.org/0000-0002-3393-1843</orcidid><orcidid>https://orcid.org/0000-0003-2384-2983</orcidid><orcidid>https://orcid.org/0000-0001-6735-5082</orcidid></search><sort><creationdate>20200901</creationdate><title>Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms</title><author>Pinkosky, Stephen L. ; Scott, John W. ; Desjardins, Eric M. ; Smith, Brennan K. ; Day, Emily A. ; Ford, Rebecca J. ; Langendorf, Christopher G. ; Ling, Naomi X. Y. ; Nero, Tracy L. ; Loh, Kim ; Galic, Sandra ; Hoque, Ashfaqul ; Smiles, William J. ; Ngoei, Kevin R. W. ; Parker, Michael W. ; Yan, Yan ; Melcher, Karsten ; Kemp, Bruce E. ; Oakhill, Jonathan S. ; Steinberg, Gregory R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-602f6dd0b3a26d8acfecaf43d41190a85f2ab6f23e5f744087de8f346ea42b0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/58</topic><topic>13/95</topic><topic>14</topic><topic>631/443/319</topic><topic>631/45</topic><topic>631/80/86/2369</topic><topic>64/60</topic><topic>82/81</topic><topic>82/83</topic><topic>96/106</topic><topic>96/95</topic><topic>Acyl Coenzyme A - physiology</topic><topic>Allosteric Regulation - physiology</topic><topic>AMP-Activated Protein Kinases - chemistry</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Catalytic Domain</topic><topic>Esters</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - metabolism</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Molecular</topic><topic>Mutation - genetics</topic><topic>Oxidation-Reduction</topic><topic>Palmitoyl Coenzyme A - metabolism</topic><topic>Phosphorylation</topic><topic>Pyrones - pharmacology</topic><topic>Thiophenes - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinkosky, Stephen L.</creatorcontrib><creatorcontrib>Scott, John W.</creatorcontrib><creatorcontrib>Desjardins, Eric M.</creatorcontrib><creatorcontrib>Smith, Brennan K.</creatorcontrib><creatorcontrib>Day, Emily A.</creatorcontrib><creatorcontrib>Ford, Rebecca J.</creatorcontrib><creatorcontrib>Langendorf, Christopher G.</creatorcontrib><creatorcontrib>Ling, Naomi X. Y.</creatorcontrib><creatorcontrib>Nero, Tracy L.</creatorcontrib><creatorcontrib>Loh, Kim</creatorcontrib><creatorcontrib>Galic, Sandra</creatorcontrib><creatorcontrib>Hoque, Ashfaqul</creatorcontrib><creatorcontrib>Smiles, William J.</creatorcontrib><creatorcontrib>Ngoei, Kevin R. W.</creatorcontrib><creatorcontrib>Parker, Michael W.</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><creatorcontrib>Melcher, Karsten</creatorcontrib><creatorcontrib>Kemp, Bruce E.</creatorcontrib><creatorcontrib>Oakhill, Jonathan S.</creatorcontrib><creatorcontrib>Steinberg, Gregory R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinkosky, Stephen L.</au><au>Scott, John W.</au><au>Desjardins, Eric M.</au><au>Smith, Brennan K.</au><au>Day, Emily A.</au><au>Ford, Rebecca J.</au><au>Langendorf, Christopher G.</au><au>Ling, Naomi X. Y.</au><au>Nero, Tracy L.</au><au>Loh, Kim</au><au>Galic, Sandra</au><au>Hoque, Ashfaqul</au><au>Smiles, William J.</au><au>Ngoei, Kevin R. W.</au><au>Parker, Michael W.</au><au>Yan, Yan</au><au>Melcher, Karsten</au><au>Kemp, Bruce E.</au><au>Oakhill, Jonathan S.</au><au>Steinberg, Gregory R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>2</volume><issue>9</issue><spage>873</spage><epage>881</epage><pages>873-881</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>Long-chain fatty acids (LCFAs) play important roles in cellular energy metabolism, acting as both an important energy source and signalling molecules 1 . LCFA-CoA esters promote their own oxidation by acting as allosteric inhibitors of acetyl-CoA carboxylase, which reduces the production of malonyl-CoA and relieves inhibition of carnitine palmitoyl-transferase 1, thereby promoting LCFA-CoA transport into the mitochondria for β-oxidation 2 – 6 . Here we report a new level of regulation wherein LCFA-CoA esters per se allosterically activate AMP-activated protein kinase (AMPK) β1–containing isoforms to increase fatty acid oxidation through phosphorylation of acetyl-CoA carboxylase. Activation of AMPK by LCFA-CoA esters requires the allosteric drug and metabolite site formed between the α-subunit kinase domain and the β-subunit. β1 subunit mutations that inhibit AMPK activation by the small-molecule activator A769662, which binds to the allosteric drug and metabolite site, also inhibit activation by LCFA-CoAs. Thus, LCFA-CoA metabolites act as direct endogenous AMPK β1–selective activators and promote LCFA oxidation. Steinberg and colleagues show that long-chain fatty acyl-CoA esters are endogenous ligands for the drug-binding domain of AMPK β1–containing isoforms, and that such binding is critical for enhancement of fatty acid oxidation. These data may help explain how AMPK integrates responses to ketogenic diets, fasting or endurance exercise across distinct tissues in the absence of changes in adenine nucleotides.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32719536</pmid><doi>10.1038/s42255-020-0245-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6846-689X</orcidid><orcidid>https://orcid.org/0000-0002-9125-4027</orcidid><orcidid>https://orcid.org/0000-0002-1896-9798</orcidid><orcidid>https://orcid.org/0000-0001-6240-4092</orcidid><orcidid>https://orcid.org/0000-0001-5425-8275</orcidid><orcidid>https://orcid.org/0000-0002-3101-1138</orcidid><orcidid>https://orcid.org/0000-0002-9475-1440</orcidid><orcidid>https://orcid.org/0000-0003-3245-5715</orcidid><orcidid>https://orcid.org/0000-0002-3393-1843</orcidid><orcidid>https://orcid.org/0000-0003-2384-2983</orcidid><orcidid>https://orcid.org/0000-0001-6735-5082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5812
ispartof Nature metabolism, 2020-09, Vol.2 (9), p.873-881
issn 2522-5812
2522-5812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502547
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 101/58
13/95
14
631/443/319
631/45
631/80/86/2369
64/60
82/81
82/83
96/106
96/95
Acyl Coenzyme A - physiology
Allosteric Regulation - physiology
AMP-Activated Protein Kinases - chemistry
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
Animals
Biomedical and Life Sciences
Catalytic Domain
Esters
Isoenzymes - chemistry
Isoenzymes - metabolism
Letter
Life Sciences
Male
Mice
Mice, Inbred C57BL
Models, Molecular
Mutation - genetics
Oxidation-Reduction
Palmitoyl Coenzyme A - metabolism
Phosphorylation
Pyrones - pharmacology
Thiophenes - pharmacology
title Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-chain%20fatty%20acyl-CoA%20esters%20regulate%20metabolism%20via%20allosteric%20control%20of%20AMPK%20%CE%B21%20isoforms&rft.jtitle=Nature%20metabolism&rft.au=Pinkosky,%20Stephen%20L.&rft.date=2020-09-01&rft.volume=2&rft.issue=9&rft.spage=873&rft.epage=881&rft.pages=873-881&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-020-0245-2&rft_dat=%3Cproquest_pubme%3E2428064366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428064366&rft_id=info:pmid/32719536&rfr_iscdi=true