MicroRNA-Related Prognosis Biomarkers from High-Throughput Sequencing Data of Colorectal Cancer

Background. Colorectal cancer (CRC) is the third most common cancer in the world, and most of them are adenocarcinomas. CRC could be classified as colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) according to the original tumorigenesis position. Increasing evidences indicated that microR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Liu, Yuan-Wu, Zhu, Ning, Zhang, Ti, Yao, Zhi-Yong, Xing, Xiaoliang, Peng, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2020
container_start_page 1
container_title BioMed research international
container_volume 2020
creator Liu, Yuan-Wu
Zhu, Ning
Zhang, Ti
Yao, Zhi-Yong
Xing, Xiaoliang
Peng, Jing
description Background. Colorectal cancer (CRC) is the third most common cancer in the world, and most of them are adenocarcinomas. CRC could be classified as colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) according to the original tumorigenesis position. Increasing evidences indicated that microRNAs (miRNAs) play an important role in the occurrence of multiple tumors. Methods. In this study, we firstly downloaded miRNA (COAD, 8 controls vs. 455 tumors; READ, 3 controls vs. 161 tumors) and mRNA (COAD, 41 controls vs. 478 tumors; READ, 10 controls vs. 166 tumors) data from The Cancer Genome Atlas (TCGA) database and then used DESeq2, RegParallel, miRDB, TargetScanHuman 7.2, DAVID 6.8, STRING, and Cytoscape software to identify the potential prognosis biomarkers. Results. We identified 175 differential expression miRNAs (DEMs) and 3747 differential expression genes (DEGs) in COAD and 184 DEMs and 3928 DEGs in READ. And then, we obtained 21 (13 in COAD and 8 in READ) DEMs associated with the survival rates, which correlated with 440 (217 in COAD and 223 in READ) overlapping DEGs. Through survival analysis for those overlapping DEGs, we found 11 (8 in COAD and 3 in READ) overlapping DGEs associated with survival rates of patients, which were correlated with 9 (7 in COAD and 2 in READ) DEMs significantly. Conclusion. In this study, we found several candidate prognostic biomarkers which have been identified in various cancers and also found several new prognosis biomarkers of COAD and READ. In conclusion, this analysis based on theoretical knowledge and clinical outcomes we have done needs further confirmation by more researches.
doi_str_mv 10.1155/2020/7905380
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7501550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445423100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-62d67e6b6a4bf981d807d930925c825b0919f2c1df179e627198c521d904123a3</originalsourceid><addsrcrecordid>eNqNkc9PFDEcxRsjEQLcPJsmXkxwpL-nvZjAKkICQhDPTbfTmSnOtks7o_G_p5tdF_RkL98m309evu89AF5j9AFjzo8JIui4VohTiV6APUIxqwRm-OX2T-kuOMz5HpUnsUBKvAK7lCjBEKN7QF95m-Lt15Pq1g1mdA28SbELMfsMT31cmPTDpQzbFBfw3Hd9ddenOHX9chrhN_cwuWB96OAnMxoYWziLQ0zOjmaAMxOsSwdgpzVDdoebuQ--n32-m51Xl9dfLmYnl5XltB4rQRpROzEXhs1bJXEjUd0oihThVhI-RwqrlljctLhWTpAaK2k5wY1CDBNq6D74uNZdTvOFa6wLYzKDXiZfLPzW0Xj99yb4Xnfxp645KkGiIvBuI5BisZVHvfDZumEwwcUpa8IYZyVTtELf_oPexymFYm9FMSIRF7JQ79dUyTfn5NrtMRjpVXl6VZ7elFfwN88NbOE_VRXgaA30PjTml_9POVcY15onGtOaYEkfAdQ_qfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444280568</pqid></control><display><type>article</type><title>MicroRNA-Related Prognosis Biomarkers from High-Throughput Sequencing Data of Colorectal Cancer</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Liu, Yuan-Wu ; Zhu, Ning ; Zhang, Ti ; Yao, Zhi-Yong ; Xing, Xiaoliang ; Peng, Jing</creator><contributor>Liu, Hongliang ; Hongliang Liu</contributor><creatorcontrib>Liu, Yuan-Wu ; Zhu, Ning ; Zhang, Ti ; Yao, Zhi-Yong ; Xing, Xiaoliang ; Peng, Jing ; Liu, Hongliang ; Hongliang Liu</creatorcontrib><description>Background. Colorectal cancer (CRC) is the third most common cancer in the world, and most of them are adenocarcinomas. CRC could be classified as colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) according to the original tumorigenesis position. Increasing evidences indicated that microRNAs (miRNAs) play an important role in the occurrence of multiple tumors. Methods. In this study, we firstly downloaded miRNA (COAD, 8 controls vs. 455 tumors; READ, 3 controls vs. 161 tumors) and mRNA (COAD, 41 controls vs. 478 tumors; READ, 10 controls vs. 166 tumors) data from The Cancer Genome Atlas (TCGA) database and then used DESeq2, RegParallel, miRDB, TargetScanHuman 7.2, DAVID 6.8, STRING, and Cytoscape software to identify the potential prognosis biomarkers. Results. We identified 175 differential expression miRNAs (DEMs) and 3747 differential expression genes (DEGs) in COAD and 184 DEMs and 3928 DEGs in READ. And then, we obtained 21 (13 in COAD and 8 in READ) DEMs associated with the survival rates, which correlated with 440 (217 in COAD and 223 in READ) overlapping DEGs. Through survival analysis for those overlapping DEGs, we found 11 (8 in COAD and 3 in READ) overlapping DGEs associated with survival rates of patients, which were correlated with 9 (7 in COAD and 2 in READ) DEMs significantly. Conclusion. In this study, we found several candidate prognostic biomarkers which have been identified in various cancers and also found several new prognosis biomarkers of COAD and READ. In conclusion, this analysis based on theoretical knowledge and clinical outcomes we have done needs further confirmation by more researches.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2020/7905380</identifier><identifier>PMID: 32964043</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adenocarcinoma ; Adenocarcinoma - genetics ; Adenocarcinoma - pathology ; Biomarkers ; Biomarkers, Tumor - genetics ; Biomedical research ; Cancer ; Cancer therapies ; Colon ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - pathology ; Correlation analysis ; DNA methylation ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic - genetics ; Gene Regulatory Networks - genetics ; Genomes ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Medical prognosis ; Metastasis ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; mRNA ; Next-generation sequencing ; Pathogenesis ; Prognosis ; Rectum ; Regression analysis ; RNA, Messenger - genetics ; Software ; Survival ; Survival Analysis ; Survival Rate ; Tumorigenesis ; Tumors</subject><ispartof>BioMed research international, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Xiao-Liang Xing et al.</rights><rights>Copyright © 2020 Xiao-Liang Xing et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Xiao-Liang Xing et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-62d67e6b6a4bf981d807d930925c825b0919f2c1df179e627198c521d904123a3</citedby><cites>FETCH-LOGICAL-c537t-62d67e6b6a4bf981d807d930925c825b0919f2c1df179e627198c521d904123a3</cites><orcidid>0000-0002-5553-5171 ; 0000-0002-7804-0622 ; 0000-0001-5132-6252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501550/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501550/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4022,27922,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32964043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Liu, Hongliang</contributor><contributor>Hongliang Liu</contributor><creatorcontrib>Liu, Yuan-Wu</creatorcontrib><creatorcontrib>Zhu, Ning</creatorcontrib><creatorcontrib>Zhang, Ti</creatorcontrib><creatorcontrib>Yao, Zhi-Yong</creatorcontrib><creatorcontrib>Xing, Xiaoliang</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><title>MicroRNA-Related Prognosis Biomarkers from High-Throughput Sequencing Data of Colorectal Cancer</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Background. Colorectal cancer (CRC) is the third most common cancer in the world, and most of them are adenocarcinomas. CRC could be classified as colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) according to the original tumorigenesis position. Increasing evidences indicated that microRNAs (miRNAs) play an important role in the occurrence of multiple tumors. Methods. In this study, we firstly downloaded miRNA (COAD, 8 controls vs. 455 tumors; READ, 3 controls vs. 161 tumors) and mRNA (COAD, 41 controls vs. 478 tumors; READ, 10 controls vs. 166 tumors) data from The Cancer Genome Atlas (TCGA) database and then used DESeq2, RegParallel, miRDB, TargetScanHuman 7.2, DAVID 6.8, STRING, and Cytoscape software to identify the potential prognosis biomarkers. Results. We identified 175 differential expression miRNAs (DEMs) and 3747 differential expression genes (DEGs) in COAD and 184 DEMs and 3928 DEGs in READ. And then, we obtained 21 (13 in COAD and 8 in READ) DEMs associated with the survival rates, which correlated with 440 (217 in COAD and 223 in READ) overlapping DEGs. Through survival analysis for those overlapping DEGs, we found 11 (8 in COAD and 3 in READ) overlapping DGEs associated with survival rates of patients, which were correlated with 9 (7 in COAD and 2 in READ) DEMs significantly. Conclusion. In this study, we found several candidate prognostic biomarkers which have been identified in various cancers and also found several new prognosis biomarkers of COAD and READ. In conclusion, this analysis based on theoretical knowledge and clinical outcomes we have done needs further confirmation by more researches.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - pathology</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomedical research</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Colon</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Correlation analysis</subject><subject>DNA methylation</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>mRNA</subject><subject>Next-generation sequencing</subject><subject>Pathogenesis</subject><subject>Prognosis</subject><subject>Rectum</subject><subject>Regression analysis</subject><subject>RNA, Messenger - genetics</subject><subject>Software</subject><subject>Survival</subject><subject>Survival Analysis</subject><subject>Survival Rate</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc9PFDEcxRsjEQLcPJsmXkxwpL-nvZjAKkICQhDPTbfTmSnOtks7o_G_p5tdF_RkL98m309evu89AF5j9AFjzo8JIui4VohTiV6APUIxqwRm-OX2T-kuOMz5HpUnsUBKvAK7lCjBEKN7QF95m-Lt15Pq1g1mdA28SbELMfsMT31cmPTDpQzbFBfw3Hd9ddenOHX9chrhN_cwuWB96OAnMxoYWziLQ0zOjmaAMxOsSwdgpzVDdoebuQ--n32-m51Xl9dfLmYnl5XltB4rQRpROzEXhs1bJXEjUd0oihThVhI-RwqrlljctLhWTpAaK2k5wY1CDBNq6D74uNZdTvOFa6wLYzKDXiZfLPzW0Xj99yb4Xnfxp645KkGiIvBuI5BisZVHvfDZumEwwcUpa8IYZyVTtELf_oPexymFYm9FMSIRF7JQ79dUyTfn5NrtMRjpVXl6VZ7elFfwN88NbOE_VRXgaA30PjTml_9POVcY15onGtOaYEkfAdQ_qfg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Yuan-Wu</creator><creator>Zhu, Ning</creator><creator>Zhang, Ti</creator><creator>Yao, Zhi-Yong</creator><creator>Xing, Xiaoliang</creator><creator>Peng, Jing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5553-5171</orcidid><orcidid>https://orcid.org/0000-0002-7804-0622</orcidid><orcidid>https://orcid.org/0000-0001-5132-6252</orcidid></search><sort><creationdate>2020</creationdate><title>MicroRNA-Related Prognosis Biomarkers from High-Throughput Sequencing Data of Colorectal Cancer</title><author>Liu, Yuan-Wu ; Zhu, Ning ; Zhang, Ti ; Yao, Zhi-Yong ; Xing, Xiaoliang ; Peng, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-62d67e6b6a4bf981d807d930925c825b0919f2c1df179e627198c521d904123a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - pathology</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomedical research</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Colon</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Correlation analysis</topic><topic>DNA methylation</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>mRNA</topic><topic>Next-generation sequencing</topic><topic>Pathogenesis</topic><topic>Prognosis</topic><topic>Rectum</topic><topic>Regression analysis</topic><topic>RNA, Messenger - genetics</topic><topic>Software</topic><topic>Survival</topic><topic>Survival Analysis</topic><topic>Survival Rate</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuan-Wu</creatorcontrib><creatorcontrib>Zhu, Ning</creatorcontrib><creatorcontrib>Zhang, Ti</creatorcontrib><creatorcontrib>Yao, Zhi-Yong</creatorcontrib><creatorcontrib>Xing, Xiaoliang</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuan-Wu</au><au>Zhu, Ning</au><au>Zhang, Ti</au><au>Yao, Zhi-Yong</au><au>Xing, Xiaoliang</au><au>Peng, Jing</au><au>Liu, Hongliang</au><au>Hongliang Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-Related Prognosis Biomarkers from High-Throughput Sequencing Data of Colorectal Cancer</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Background. Colorectal cancer (CRC) is the third most common cancer in the world, and most of them are adenocarcinomas. CRC could be classified as colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) according to the original tumorigenesis position. Increasing evidences indicated that microRNAs (miRNAs) play an important role in the occurrence of multiple tumors. Methods. In this study, we firstly downloaded miRNA (COAD, 8 controls vs. 455 tumors; READ, 3 controls vs. 161 tumors) and mRNA (COAD, 41 controls vs. 478 tumors; READ, 10 controls vs. 166 tumors) data from The Cancer Genome Atlas (TCGA) database and then used DESeq2, RegParallel, miRDB, TargetScanHuman 7.2, DAVID 6.8, STRING, and Cytoscape software to identify the potential prognosis biomarkers. Results. We identified 175 differential expression miRNAs (DEMs) and 3747 differential expression genes (DEGs) in COAD and 184 DEMs and 3928 DEGs in READ. And then, we obtained 21 (13 in COAD and 8 in READ) DEMs associated with the survival rates, which correlated with 440 (217 in COAD and 223 in READ) overlapping DEGs. Through survival analysis for those overlapping DEGs, we found 11 (8 in COAD and 3 in READ) overlapping DGEs associated with survival rates of patients, which were correlated with 9 (7 in COAD and 2 in READ) DEMs significantly. Conclusion. In this study, we found several candidate prognostic biomarkers which have been identified in various cancers and also found several new prognosis biomarkers of COAD and READ. In conclusion, this analysis based on theoretical knowledge and clinical outcomes we have done needs further confirmation by more researches.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32964043</pmid><doi>10.1155/2020/7905380</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5553-5171</orcidid><orcidid>https://orcid.org/0000-0002-7804-0622</orcidid><orcidid>https://orcid.org/0000-0001-5132-6252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2020, Vol.2020 (2020), p.1-12
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7501550
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Adenocarcinoma
Adenocarcinoma - genetics
Adenocarcinoma - pathology
Biomarkers
Biomarkers, Tumor - genetics
Biomedical research
Cancer
Cancer therapies
Colon
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - genetics
Colorectal Neoplasms - pathology
Correlation analysis
DNA methylation
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic - genetics
Gene Regulatory Networks - genetics
Genomes
High-Throughput Nucleotide Sequencing - methods
Humans
Medical prognosis
Metastasis
MicroRNAs
MicroRNAs - genetics
miRNA
mRNA
Next-generation sequencing
Pathogenesis
Prognosis
Rectum
Regression analysis
RNA, Messenger - genetics
Software
Survival
Survival Analysis
Survival Rate
Tumorigenesis
Tumors
title MicroRNA-Related Prognosis Biomarkers from High-Throughput Sequencing Data of Colorectal Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-Related%20Prognosis%20Biomarkers%20from%20High-Throughput%20Sequencing%20Data%20of%20Colorectal%20Cancer&rft.jtitle=BioMed%20research%20international&rft.au=Liu,%20Yuan-Wu&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2020/7905380&rft_dat=%3Cproquest_pubme%3E2445423100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444280568&rft_id=info:pmid/32964043&rfr_iscdi=true