Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing

Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey respo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature human behaviour 2020-09, Vol.4 (9), p.972-982
Hauptverfasser: Allen, William E., Altae-Tran, Han, Briggs, James, Jin, Xin, McGee, Glen, Shi, Andy, Raghavan, Rumya, Kamariza, Mireille, Nova, Nicole, Pereta, Albert, Danford, Chris, Kamel, Amine, Gothe, Patrik, Milam, Evrhet, Aurambault, Jean, Primke, Thorben, Li, Weijie, Inkenbrandt, Josh, Huynh, Tuan, Chen, Evan, Lee, Christina, Croatto, Michael, Bentley, Helen, Lu, Wendy, Murray, Robert, Travassos, Mark, Coull, Brent A., Openshaw, John, Greene, Casey S., Shalem, Ophir, King, Gary, Probasco, Ryan, Cheng, David R., Silbermann, Ben, Zhang, Feng, Lin, Xihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 982
container_issue 9
container_start_page 972
container_title Nature human behaviour
container_volume 4
creator Allen, William E.
Altae-Tran, Han
Briggs, James
Jin, Xin
McGee, Glen
Shi, Andy
Raghavan, Rumya
Kamariza, Mireille
Nova, Nicole
Pereta, Albert
Danford, Chris
Kamel, Amine
Gothe, Patrik
Milam, Evrhet
Aurambault, Jean
Primke, Thorben
Li, Weijie
Inkenbrandt, Josh
Huynh, Tuan
Chen, Evan
Lee, Christina
Croatto, Michael
Bentley, Helen
Lu, Wendy
Murray, Robert
Travassos, Mark
Coull, Brent A.
Openshaw, John
Greene, Casey S.
Shalem, Ophir
King, Gary
Probasco, Ryan
Cheng, David R.
Silbermann, Ben
Zhang, Feng
Lin, Xihong
description Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic. How We Feel is a web and mobile-phone application for collecting de-identified self-reported COVID-19-related data. These data are used to map a diverse set of symptomatic, demographic, exposure and behavioural factors relevant to the ongoing pandemic.
doi_str_mv 10.1038/s41562-020-00944-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7501153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437841276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4c62d0158ca86f9cc4b3dd07c09c0fea23c9ebd1193a93cb301156d970101a73</originalsourceid><addsrcrecordid>eNqNkV9r1jAYxYMobsx9AS-k4I2g0Sd_2jQ3gtSpg8EUhrchTdN3GW1Sm3Syb790na_TC_EqgfzO4ZwchJ4TeEuA1e8iJ2VFMVDAAJJzTB-hQ8qkwIwJ_vjB_QAdx3gFAEQyLkX1FB0wWvOaMnKIvn0N0zLo5ILH0ejBFkPwO5eWznk9FKOeJud3ReiL5vz76UdMZBFvximFMb4pWnupr11Y5kL7rkg2psw-Q096PUR7fH8eoYtPJxfNF3x2_vm0-XCGDRc8YW4q2gEpa6PrqpfG8JZ1HQgD0kBvNWVG2rYjObSWzLQMSC7cSQEEiBbsCL3fbKelHW1nrE-zHtQ0u1HPNypop_588e5S7cK1EuXqxLLBq3uDOfxYcnY1umjsMGhvwxIV5UzUnFBRZfTlX-hVLp3_Z6U4rSRhgmaKbpSZQ4yz7fdhCKh1M7VtpvJm6m4ztYpePKyxl_xaKAP1Bvy0beijcdYbu8fyqmXFSElqWAduXLqbsgmLT1n6-v-lmWYbHTPhd3b-XfIf-W8BwSLCQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442691372</pqid></control><display><type>article</type><title>Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing</title><source>MEDLINE</source><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Web of Science - Social Sciences Citation Index – 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Allen, William E. ; Altae-Tran, Han ; Briggs, James ; Jin, Xin ; McGee, Glen ; Shi, Andy ; Raghavan, Rumya ; Kamariza, Mireille ; Nova, Nicole ; Pereta, Albert ; Danford, Chris ; Kamel, Amine ; Gothe, Patrik ; Milam, Evrhet ; Aurambault, Jean ; Primke, Thorben ; Li, Weijie ; Inkenbrandt, Josh ; Huynh, Tuan ; Chen, Evan ; Lee, Christina ; Croatto, Michael ; Bentley, Helen ; Lu, Wendy ; Murray, Robert ; Travassos, Mark ; Coull, Brent A. ; Openshaw, John ; Greene, Casey S. ; Shalem, Ophir ; King, Gary ; Probasco, Ryan ; Cheng, David R. ; Silbermann, Ben ; Zhang, Feng ; Lin, Xihong</creator><creatorcontrib>Allen, William E. ; Altae-Tran, Han ; Briggs, James ; Jin, Xin ; McGee, Glen ; Shi, Andy ; Raghavan, Rumya ; Kamariza, Mireille ; Nova, Nicole ; Pereta, Albert ; Danford, Chris ; Kamel, Amine ; Gothe, Patrik ; Milam, Evrhet ; Aurambault, Jean ; Primke, Thorben ; Li, Weijie ; Inkenbrandt, Josh ; Huynh, Tuan ; Chen, Evan ; Lee, Christina ; Croatto, Michael ; Bentley, Helen ; Lu, Wendy ; Murray, Robert ; Travassos, Mark ; Coull, Brent A. ; Openshaw, John ; Greene, Casey S. ; Shalem, Ophir ; King, Gary ; Probasco, Ryan ; Cheng, David R. ; Silbermann, Ben ; Zhang, Feng ; Lin, Xihong</creatorcontrib><description>Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic. How We Feel is a web and mobile-phone application for collecting de-identified self-reported COVID-19-related data. These data are used to map a diverse set of symptomatic, demographic, exposure and behavioural factors relevant to the ongoing pandemic.</description><identifier>ISSN: 2397-3374</identifier><identifier>EISSN: 2397-3374</identifier><identifier>DOI: 10.1038/s41562-020-00944-2</identifier><identifier>PMID: 32848231</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject><![CDATA[692/308/174 ; 692/499 ; 692/53/2421 ; Adult ; Asymptomatic Diseases - epidemiology ; Behavioral Sciences ; Betacoronavirus ; Biomedical and Life Sciences ; Clinical Laboratory Techniques - statistics & numerical data ; Coronavirus Infections - diagnosis ; Coronavirus Infections - epidemiology ; Coronavirus Infections - prevention & control ; Coronavirus Infections - psychology ; Coronaviruses ; COVID-19 ; COVID-19 Testing ; Demography ; Experimental Psychology ; Female ; Health behavior ; Humans ; Life Sciences ; Life Sciences & Biomedicine ; Longitudinal Studies ; Male ; Mapping ; Microeconomics ; Mobile Applications ; Models, Statistical ; Multidisciplinary Sciences ; Neurosciences ; Neurosciences & Neurology ; Pandemics ; Pandemics - prevention & control ; Pandemics - statistics & numerical data ; Personality and Social Psychology ; Pneumonia, Viral - diagnosis ; Pneumonia, Viral - epidemiology ; Pneumonia, Viral - prevention & control ; Pneumonia, Viral - psychology ; Polls & surveys ; Prediction models ; Psychology ; Psychology, Biological ; Psychology, Experimental ; Public health ; Risk factors ; SARS-CoV-2 ; Science & Technology ; Science & Technology - Other Topics ; Severe acute respiratory syndrome coronavirus 2 ; Social Sciences ; Symptoms ; United States - epidemiology]]></subject><ispartof>Nature human behaviour, 2020-09, Vol.4 (9), p.972-982</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>70</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000563151800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-4c62d0158ca86f9cc4b3dd07c09c0fea23c9ebd1193a93cb301156d970101a73</citedby><cites>FETCH-LOGICAL-c474t-4c62d0158ca86f9cc4b3dd07c09c0fea23c9ebd1193a93cb301156d970101a73</cites><orcidid>0000-0002-6133-9169 ; 0000-0002-1319-9333 ; 0000-0002-6045-3322 ; 0000-0001-6552-9536 ; 0000-0001-8713-9213 ; 0000-0001-6849-4156 ; 0000-0002-6168-7761 ; 0000-0002-3674-666X ; 0000-0002-3674-7187 ; 0000-0002-5327-7631 ; 0000-0002-9862-6428 ; 0000-0003-2344-992X ; 0000-0001-7067-7752 ; 0000-0002-7444-1103 ; 0000-0003-1255-0803 ; 0000-0002-5907-6902 ; 0000-0001-8585-1215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,28253,28254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32848231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allen, William E.</creatorcontrib><creatorcontrib>Altae-Tran, Han</creatorcontrib><creatorcontrib>Briggs, James</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>McGee, Glen</creatorcontrib><creatorcontrib>Shi, Andy</creatorcontrib><creatorcontrib>Raghavan, Rumya</creatorcontrib><creatorcontrib>Kamariza, Mireille</creatorcontrib><creatorcontrib>Nova, Nicole</creatorcontrib><creatorcontrib>Pereta, Albert</creatorcontrib><creatorcontrib>Danford, Chris</creatorcontrib><creatorcontrib>Kamel, Amine</creatorcontrib><creatorcontrib>Gothe, Patrik</creatorcontrib><creatorcontrib>Milam, Evrhet</creatorcontrib><creatorcontrib>Aurambault, Jean</creatorcontrib><creatorcontrib>Primke, Thorben</creatorcontrib><creatorcontrib>Li, Weijie</creatorcontrib><creatorcontrib>Inkenbrandt, Josh</creatorcontrib><creatorcontrib>Huynh, Tuan</creatorcontrib><creatorcontrib>Chen, Evan</creatorcontrib><creatorcontrib>Lee, Christina</creatorcontrib><creatorcontrib>Croatto, Michael</creatorcontrib><creatorcontrib>Bentley, Helen</creatorcontrib><creatorcontrib>Lu, Wendy</creatorcontrib><creatorcontrib>Murray, Robert</creatorcontrib><creatorcontrib>Travassos, Mark</creatorcontrib><creatorcontrib>Coull, Brent A.</creatorcontrib><creatorcontrib>Openshaw, John</creatorcontrib><creatorcontrib>Greene, Casey S.</creatorcontrib><creatorcontrib>Shalem, Ophir</creatorcontrib><creatorcontrib>King, Gary</creatorcontrib><creatorcontrib>Probasco, Ryan</creatorcontrib><creatorcontrib>Cheng, David R.</creatorcontrib><creatorcontrib>Silbermann, Ben</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><title>Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing</title><title>Nature human behaviour</title><addtitle>Nat Hum Behav</addtitle><addtitle>NAT HUM BEHAV</addtitle><addtitle>Nat Hum Behav</addtitle><description>Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic. How We Feel is a web and mobile-phone application for collecting de-identified self-reported COVID-19-related data. These data are used to map a diverse set of symptomatic, demographic, exposure and behavioural factors relevant to the ongoing pandemic.</description><subject>692/308/174</subject><subject>692/499</subject><subject>692/53/2421</subject><subject>Adult</subject><subject>Asymptomatic Diseases - epidemiology</subject><subject>Behavioral Sciences</subject><subject>Betacoronavirus</subject><subject>Biomedical and Life Sciences</subject><subject>Clinical Laboratory Techniques - statistics &amp; numerical data</subject><subject>Coronavirus Infections - diagnosis</subject><subject>Coronavirus Infections - epidemiology</subject><subject>Coronavirus Infections - prevention &amp; control</subject><subject>Coronavirus Infections - psychology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 Testing</subject><subject>Demography</subject><subject>Experimental Psychology</subject><subject>Female</subject><subject>Health behavior</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Mapping</subject><subject>Microeconomics</subject><subject>Mobile Applications</subject><subject>Models, Statistical</subject><subject>Multidisciplinary Sciences</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Pandemics</subject><subject>Pandemics - prevention &amp; control</subject><subject>Pandemics - statistics &amp; numerical data</subject><subject>Personality and Social Psychology</subject><subject>Pneumonia, Viral - diagnosis</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>Pneumonia, Viral - prevention &amp; control</subject><subject>Pneumonia, Viral - psychology</subject><subject>Polls &amp; surveys</subject><subject>Prediction models</subject><subject>Psychology</subject><subject>Psychology, Biological</subject><subject>Psychology, Experimental</subject><subject>Public health</subject><subject>Risk factors</subject><subject>SARS-CoV-2</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Social Sciences</subject><subject>Symptoms</subject><subject>United States - epidemiology</subject><issn>2397-3374</issn><issn>2397-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ARHDP</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9r1jAYxYMobsx9AS-k4I2g0Sd_2jQ3gtSpg8EUhrchTdN3GW1Sm3Syb790na_TC_EqgfzO4ZwchJ4TeEuA1e8iJ2VFMVDAAJJzTB-hQ8qkwIwJ_vjB_QAdx3gFAEQyLkX1FB0wWvOaMnKIvn0N0zLo5ILH0ejBFkPwO5eWznk9FKOeJud3ReiL5vz76UdMZBFvximFMb4pWnupr11Y5kL7rkg2psw-Q096PUR7fH8eoYtPJxfNF3x2_vm0-XCGDRc8YW4q2gEpa6PrqpfG8JZ1HQgD0kBvNWVG2rYjObSWzLQMSC7cSQEEiBbsCL3fbKelHW1nrE-zHtQ0u1HPNypop_588e5S7cK1EuXqxLLBq3uDOfxYcnY1umjsMGhvwxIV5UzUnFBRZfTlX-hVLp3_Z6U4rSRhgmaKbpSZQ4yz7fdhCKh1M7VtpvJm6m4ztYpePKyxl_xaKAP1Bvy0beijcdYbu8fyqmXFSElqWAduXLqbsgmLT1n6-v-lmWYbHTPhd3b-XfIf-W8BwSLCQQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Allen, William E.</creator><creator>Altae-Tran, Han</creator><creator>Briggs, James</creator><creator>Jin, Xin</creator><creator>McGee, Glen</creator><creator>Shi, Andy</creator><creator>Raghavan, Rumya</creator><creator>Kamariza, Mireille</creator><creator>Nova, Nicole</creator><creator>Pereta, Albert</creator><creator>Danford, Chris</creator><creator>Kamel, Amine</creator><creator>Gothe, Patrik</creator><creator>Milam, Evrhet</creator><creator>Aurambault, Jean</creator><creator>Primke, Thorben</creator><creator>Li, Weijie</creator><creator>Inkenbrandt, Josh</creator><creator>Huynh, Tuan</creator><creator>Chen, Evan</creator><creator>Lee, Christina</creator><creator>Croatto, Michael</creator><creator>Bentley, Helen</creator><creator>Lu, Wendy</creator><creator>Murray, Robert</creator><creator>Travassos, Mark</creator><creator>Coull, Brent A.</creator><creator>Openshaw, John</creator><creator>Greene, Casey S.</creator><creator>Shalem, Ophir</creator><creator>King, Gary</creator><creator>Probasco, Ryan</creator><creator>Cheng, David R.</creator><creator>Silbermann, Ben</creator><creator>Zhang, Feng</creator><creator>Lin, Xihong</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>17B</scope><scope>AOWDO</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>M2M</scope><scope>M2R</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6133-9169</orcidid><orcidid>https://orcid.org/0000-0002-1319-9333</orcidid><orcidid>https://orcid.org/0000-0002-6045-3322</orcidid><orcidid>https://orcid.org/0000-0001-6552-9536</orcidid><orcidid>https://orcid.org/0000-0001-8713-9213</orcidid><orcidid>https://orcid.org/0000-0001-6849-4156</orcidid><orcidid>https://orcid.org/0000-0002-6168-7761</orcidid><orcidid>https://orcid.org/0000-0002-3674-666X</orcidid><orcidid>https://orcid.org/0000-0002-3674-7187</orcidid><orcidid>https://orcid.org/0000-0002-5327-7631</orcidid><orcidid>https://orcid.org/0000-0002-9862-6428</orcidid><orcidid>https://orcid.org/0000-0003-2344-992X</orcidid><orcidid>https://orcid.org/0000-0001-7067-7752</orcidid><orcidid>https://orcid.org/0000-0002-7444-1103</orcidid><orcidid>https://orcid.org/0000-0003-1255-0803</orcidid><orcidid>https://orcid.org/0000-0002-5907-6902</orcidid><orcidid>https://orcid.org/0000-0001-8585-1215</orcidid></search><sort><creationdate>20200901</creationdate><title>Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing</title><author>Allen, William E. ; Altae-Tran, Han ; Briggs, James ; Jin, Xin ; McGee, Glen ; Shi, Andy ; Raghavan, Rumya ; Kamariza, Mireille ; Nova, Nicole ; Pereta, Albert ; Danford, Chris ; Kamel, Amine ; Gothe, Patrik ; Milam, Evrhet ; Aurambault, Jean ; Primke, Thorben ; Li, Weijie ; Inkenbrandt, Josh ; Huynh, Tuan ; Chen, Evan ; Lee, Christina ; Croatto, Michael ; Bentley, Helen ; Lu, Wendy ; Murray, Robert ; Travassos, Mark ; Coull, Brent A. ; Openshaw, John ; Greene, Casey S. ; Shalem, Ophir ; King, Gary ; Probasco, Ryan ; Cheng, David R. ; Silbermann, Ben ; Zhang, Feng ; Lin, Xihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4c62d0158ca86f9cc4b3dd07c09c0fea23c9ebd1193a93cb301156d970101a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/308/174</topic><topic>692/499</topic><topic>692/53/2421</topic><topic>Adult</topic><topic>Asymptomatic Diseases - epidemiology</topic><topic>Behavioral Sciences</topic><topic>Betacoronavirus</topic><topic>Biomedical and Life Sciences</topic><topic>Clinical Laboratory Techniques - statistics &amp; numerical data</topic><topic>Coronavirus Infections - diagnosis</topic><topic>Coronavirus Infections - epidemiology</topic><topic>Coronavirus Infections - prevention &amp; control</topic><topic>Coronavirus Infections - psychology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 Testing</topic><topic>Demography</topic><topic>Experimental Psychology</topic><topic>Female</topic><topic>Health behavior</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Mapping</topic><topic>Microeconomics</topic><topic>Mobile Applications</topic><topic>Models, Statistical</topic><topic>Multidisciplinary Sciences</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Pandemics</topic><topic>Pandemics - prevention &amp; control</topic><topic>Pandemics - statistics &amp; numerical data</topic><topic>Personality and Social Psychology</topic><topic>Pneumonia, Viral - diagnosis</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>Pneumonia, Viral - prevention &amp; control</topic><topic>Pneumonia, Viral - psychology</topic><topic>Polls &amp; surveys</topic><topic>Prediction models</topic><topic>Psychology</topic><topic>Psychology, Biological</topic><topic>Psychology, Experimental</topic><topic>Public health</topic><topic>Risk factors</topic><topic>SARS-CoV-2</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Social Sciences</topic><topic>Symptoms</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, William E.</creatorcontrib><creatorcontrib>Altae-Tran, Han</creatorcontrib><creatorcontrib>Briggs, James</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>McGee, Glen</creatorcontrib><creatorcontrib>Shi, Andy</creatorcontrib><creatorcontrib>Raghavan, Rumya</creatorcontrib><creatorcontrib>Kamariza, Mireille</creatorcontrib><creatorcontrib>Nova, Nicole</creatorcontrib><creatorcontrib>Pereta, Albert</creatorcontrib><creatorcontrib>Danford, Chris</creatorcontrib><creatorcontrib>Kamel, Amine</creatorcontrib><creatorcontrib>Gothe, Patrik</creatorcontrib><creatorcontrib>Milam, Evrhet</creatorcontrib><creatorcontrib>Aurambault, Jean</creatorcontrib><creatorcontrib>Primke, Thorben</creatorcontrib><creatorcontrib>Li, Weijie</creatorcontrib><creatorcontrib>Inkenbrandt, Josh</creatorcontrib><creatorcontrib>Huynh, Tuan</creatorcontrib><creatorcontrib>Chen, Evan</creatorcontrib><creatorcontrib>Lee, Christina</creatorcontrib><creatorcontrib>Croatto, Michael</creatorcontrib><creatorcontrib>Bentley, Helen</creatorcontrib><creatorcontrib>Lu, Wendy</creatorcontrib><creatorcontrib>Murray, Robert</creatorcontrib><creatorcontrib>Travassos, Mark</creatorcontrib><creatorcontrib>Coull, Brent A.</creatorcontrib><creatorcontrib>Openshaw, John</creatorcontrib><creatorcontrib>Greene, Casey S.</creatorcontrib><creatorcontrib>Shalem, Ophir</creatorcontrib><creatorcontrib>King, Gary</creatorcontrib><creatorcontrib>Probasco, Ryan</creatorcontrib><creatorcontrib>Cheng, David R.</creatorcontrib><creatorcontrib>Silbermann, Ben</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature human behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, William E.</au><au>Altae-Tran, Han</au><au>Briggs, James</au><au>Jin, Xin</au><au>McGee, Glen</au><au>Shi, Andy</au><au>Raghavan, Rumya</au><au>Kamariza, Mireille</au><au>Nova, Nicole</au><au>Pereta, Albert</au><au>Danford, Chris</au><au>Kamel, Amine</au><au>Gothe, Patrik</au><au>Milam, Evrhet</au><au>Aurambault, Jean</au><au>Primke, Thorben</au><au>Li, Weijie</au><au>Inkenbrandt, Josh</au><au>Huynh, Tuan</au><au>Chen, Evan</au><au>Lee, Christina</au><au>Croatto, Michael</au><au>Bentley, Helen</au><au>Lu, Wendy</au><au>Murray, Robert</au><au>Travassos, Mark</au><au>Coull, Brent A.</au><au>Openshaw, John</au><au>Greene, Casey S.</au><au>Shalem, Ophir</au><au>King, Gary</au><au>Probasco, Ryan</au><au>Cheng, David R.</au><au>Silbermann, Ben</au><au>Zhang, Feng</au><au>Lin, Xihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing</atitle><jtitle>Nature human behaviour</jtitle><stitle>Nat Hum Behav</stitle><stitle>NAT HUM BEHAV</stitle><addtitle>Nat Hum Behav</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>4</volume><issue>9</issue><spage>972</spage><epage>982</epage><pages>972-982</pages><issn>2397-3374</issn><eissn>2397-3374</eissn><abstract>Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic. How We Feel is a web and mobile-phone application for collecting de-identified self-reported COVID-19-related data. These data are used to map a diverse set of symptomatic, demographic, exposure and behavioural factors relevant to the ongoing pandemic.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32848231</pmid><doi>10.1038/s41562-020-00944-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6133-9169</orcidid><orcidid>https://orcid.org/0000-0002-1319-9333</orcidid><orcidid>https://orcid.org/0000-0002-6045-3322</orcidid><orcidid>https://orcid.org/0000-0001-6552-9536</orcidid><orcidid>https://orcid.org/0000-0001-8713-9213</orcidid><orcidid>https://orcid.org/0000-0001-6849-4156</orcidid><orcidid>https://orcid.org/0000-0002-6168-7761</orcidid><orcidid>https://orcid.org/0000-0002-3674-666X</orcidid><orcidid>https://orcid.org/0000-0002-3674-7187</orcidid><orcidid>https://orcid.org/0000-0002-5327-7631</orcidid><orcidid>https://orcid.org/0000-0002-9862-6428</orcidid><orcidid>https://orcid.org/0000-0003-2344-992X</orcidid><orcidid>https://orcid.org/0000-0001-7067-7752</orcidid><orcidid>https://orcid.org/0000-0002-7444-1103</orcidid><orcidid>https://orcid.org/0000-0003-1255-0803</orcidid><orcidid>https://orcid.org/0000-0002-5907-6902</orcidid><orcidid>https://orcid.org/0000-0001-8585-1215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-3374
ispartof Nature human behaviour, 2020-09, Vol.4 (9), p.972-982
issn 2397-3374
2397-3374
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7501153
source MEDLINE; Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 692/308/174
692/499
692/53/2421
Adult
Asymptomatic Diseases - epidemiology
Behavioral Sciences
Betacoronavirus
Biomedical and Life Sciences
Clinical Laboratory Techniques - statistics & numerical data
Coronavirus Infections - diagnosis
Coronavirus Infections - epidemiology
Coronavirus Infections - prevention & control
Coronavirus Infections - psychology
Coronaviruses
COVID-19
COVID-19 Testing
Demography
Experimental Psychology
Female
Health behavior
Humans
Life Sciences
Life Sciences & Biomedicine
Longitudinal Studies
Male
Mapping
Microeconomics
Mobile Applications
Models, Statistical
Multidisciplinary Sciences
Neurosciences
Neurosciences & Neurology
Pandemics
Pandemics - prevention & control
Pandemics - statistics & numerical data
Personality and Social Psychology
Pneumonia, Viral - diagnosis
Pneumonia, Viral - epidemiology
Pneumonia, Viral - prevention & control
Pneumonia, Viral - psychology
Polls & surveys
Prediction models
Psychology
Psychology, Biological
Psychology, Experimental
Public health
Risk factors
SARS-CoV-2
Science & Technology
Science & Technology - Other Topics
Severe acute respiratory syndrome coronavirus 2
Social Sciences
Symptoms
United States - epidemiology
title Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population-scale%20longitudinal%20mapping%20of%20COVID-19%20symptoms,%20behaviour%20and%20testing&rft.jtitle=Nature%20human%20behaviour&rft.au=Allen,%20William%20E.&rft.date=2020-09-01&rft.volume=4&rft.issue=9&rft.spage=972&rft.epage=982&rft.pages=972-982&rft.issn=2397-3374&rft.eissn=2397-3374&rft_id=info:doi/10.1038/s41562-020-00944-2&rft_dat=%3Cproquest_pubme%3E2437841276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442691372&rft_id=info:pmid/32848231&rfr_iscdi=true