DRAM for distilling microbial metabolism to automate the curation of microbiome function
Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotati...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2020-09, Vol.48 (16), p.8883-8900 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8900 |
---|---|
container_issue | 16 |
container_start_page | 8883 |
container_title | Nucleic acids research |
container_volume | 48 |
creator | Shaffer, Michael Borton, Mikayla A McGivern, Bridget B Zayed, Ahmed A La Rosa, Sabina Leanti Solden, Lindsey M Liu, Pengfei Narrowe, Adrienne B Rodríguez-Ramos, Josué Bolduc, Benjamin Gazitúa, M Consuelo Daly, Rebecca A Smith, Garrett J Vik, Dean R Pope, Phil B Sullivan, Matthew B Roux, Simon Wrighton, Kelly C |
description | Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function. |
doi_str_mv | 10.1093/nar/gkaa621 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7498326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431819437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-5b9099f78fe95de67cad43b11352cc3b4f143f4401981236f755f6191b459aec3</originalsourceid><addsrcrecordid>eNpVkdtLHTEQxkOp1OPlqe8l9EmQrZncdvMiiNpasBREwbeQzUnOSbubaJIV-t935RxFnwZmfvPN5UPoM5BvQBQ7iSafrP4aIyl8QAtgkjZcSfoRLQgjogHCu120V8ofQoCD4J_QLqOtlG1HF-j-4ubsF_Yp42UoNQxDiCs8BptTH8yAR1dNn4ZQRlwTNlNNo6kO17XDdsqmhhRx8i8NaXTYT9E-pw_QjjdDcYfbuI_uvl_enl81179__Dw_u26sAFkb0SuilG8775RYOtlas-SsB2CCWst67oEzzzkB1QFl0rdCeAkKei6UcZbto9ON7sPUj25pXazZDPohh9HkfzqZoN9XYljrVXrSLVcdo3IW-LoRSPP9uthQnV3bFKOzVYPksgUxQ0fbKTk9Tq5UPYZi3TCY6NJUNOUMOlCctTN6vEHnl5SSnX_dBYh-NkzPhumtYTP95e36r-yLQ-w_H42Tlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431819437</pqid></control><display><type>article</type><title>DRAM for distilling microbial metabolism to automate the curation of microbiome function</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shaffer, Michael ; Borton, Mikayla A ; McGivern, Bridget B ; Zayed, Ahmed A ; La Rosa, Sabina Leanti ; Solden, Lindsey M ; Liu, Pengfei ; Narrowe, Adrienne B ; Rodríguez-Ramos, Josué ; Bolduc, Benjamin ; Gazitúa, M Consuelo ; Daly, Rebecca A ; Smith, Garrett J ; Vik, Dean R ; Pope, Phil B ; Sullivan, Matthew B ; Roux, Simon ; Wrighton, Kelly C</creator><creatorcontrib>Shaffer, Michael ; Borton, Mikayla A ; McGivern, Bridget B ; Zayed, Ahmed A ; La Rosa, Sabina Leanti ; Solden, Lindsey M ; Liu, Pengfei ; Narrowe, Adrienne B ; Rodríguez-Ramos, Josué ; Bolduc, Benjamin ; Gazitúa, M Consuelo ; Daly, Rebecca A ; Smith, Garrett J ; Vik, Dean R ; Pope, Phil B ; Sullivan, Matthew B ; Roux, Simon ; Wrighton, Kelly C ; Colorado State Univ., Fort Collins, CO (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa621</identifier><identifier>PMID: 32766782</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria - classification ; BASIC BIOLOGICAL SCIENCES ; Computational Biology ; Computational Methods ; Gastrointestinal Microbiome ; Genomics - methods ; Humans ; Metabolomics - methods ; Metagenome ; Molecular Sequence Annotation - methods ; Software ; Soil Microbiology ; Viruses - classification</subject><ispartof>Nucleic acids research, 2020-09, Vol.48 (16), p.8883-8900</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-5b9099f78fe95de67cad43b11352cc3b4f143f4401981236f755f6191b459aec3</citedby><cites>FETCH-LOGICAL-c516t-5b9099f78fe95de67cad43b11352cc3b4f143f4401981236f755f6191b459aec3</cites><orcidid>0000-0001-9023-0018 ; 0000-0003-3527-8101 ; 0000-0003-0434-4217 ; 0000000304344217 ; 0000000335278101 ; 0000000190230018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498326/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498326/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32766782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1646715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaffer, Michael</creatorcontrib><creatorcontrib>Borton, Mikayla A</creatorcontrib><creatorcontrib>McGivern, Bridget B</creatorcontrib><creatorcontrib>Zayed, Ahmed A</creatorcontrib><creatorcontrib>La Rosa, Sabina Leanti</creatorcontrib><creatorcontrib>Solden, Lindsey M</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Narrowe, Adrienne B</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Josué</creatorcontrib><creatorcontrib>Bolduc, Benjamin</creatorcontrib><creatorcontrib>Gazitúa, M Consuelo</creatorcontrib><creatorcontrib>Daly, Rebecca A</creatorcontrib><creatorcontrib>Smith, Garrett J</creatorcontrib><creatorcontrib>Vik, Dean R</creatorcontrib><creatorcontrib>Pope, Phil B</creatorcontrib><creatorcontrib>Sullivan, Matthew B</creatorcontrib><creatorcontrib>Roux, Simon</creatorcontrib><creatorcontrib>Wrighton, Kelly C</creatorcontrib><creatorcontrib>Colorado State Univ., Fort Collins, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>DRAM for distilling microbial metabolism to automate the curation of microbiome function</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.</description><subject>Bacteria - classification</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Computational Biology</subject><subject>Computational Methods</subject><subject>Gastrointestinal Microbiome</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Metabolomics - methods</subject><subject>Metagenome</subject><subject>Molecular Sequence Annotation - methods</subject><subject>Software</subject><subject>Soil Microbiology</subject><subject>Viruses - classification</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtLHTEQxkOp1OPlqe8l9EmQrZncdvMiiNpasBREwbeQzUnOSbubaJIV-t935RxFnwZmfvPN5UPoM5BvQBQ7iSafrP4aIyl8QAtgkjZcSfoRLQgjogHCu120V8ofQoCD4J_QLqOtlG1HF-j-4ubsF_Yp42UoNQxDiCs8BptTH8yAR1dNn4ZQRlwTNlNNo6kO17XDdsqmhhRx8i8NaXTYT9E-pw_QjjdDcYfbuI_uvl_enl81179__Dw_u26sAFkb0SuilG8775RYOtlas-SsB2CCWst67oEzzzkB1QFl0rdCeAkKei6UcZbto9ON7sPUj25pXazZDPohh9HkfzqZoN9XYljrVXrSLVcdo3IW-LoRSPP9uthQnV3bFKOzVYPksgUxQ0fbKTk9Tq5UPYZi3TCY6NJUNOUMOlCctTN6vEHnl5SSnX_dBYh-NkzPhumtYTP95e36r-yLQ-w_H42Tlw</recordid><startdate>20200918</startdate><enddate>20200918</enddate><creator>Shaffer, Michael</creator><creator>Borton, Mikayla A</creator><creator>McGivern, Bridget B</creator><creator>Zayed, Ahmed A</creator><creator>La Rosa, Sabina Leanti</creator><creator>Solden, Lindsey M</creator><creator>Liu, Pengfei</creator><creator>Narrowe, Adrienne B</creator><creator>Rodríguez-Ramos, Josué</creator><creator>Bolduc, Benjamin</creator><creator>Gazitúa, M Consuelo</creator><creator>Daly, Rebecca A</creator><creator>Smith, Garrett J</creator><creator>Vik, Dean R</creator><creator>Pope, Phil B</creator><creator>Sullivan, Matthew B</creator><creator>Roux, Simon</creator><creator>Wrighton, Kelly C</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9023-0018</orcidid><orcidid>https://orcid.org/0000-0003-3527-8101</orcidid><orcidid>https://orcid.org/0000-0003-0434-4217</orcidid><orcidid>https://orcid.org/0000000304344217</orcidid><orcidid>https://orcid.org/0000000335278101</orcidid><orcidid>https://orcid.org/0000000190230018</orcidid></search><sort><creationdate>20200918</creationdate><title>DRAM for distilling microbial metabolism to automate the curation of microbiome function</title><author>Shaffer, Michael ; Borton, Mikayla A ; McGivern, Bridget B ; Zayed, Ahmed A ; La Rosa, Sabina Leanti ; Solden, Lindsey M ; Liu, Pengfei ; Narrowe, Adrienne B ; Rodríguez-Ramos, Josué ; Bolduc, Benjamin ; Gazitúa, M Consuelo ; Daly, Rebecca A ; Smith, Garrett J ; Vik, Dean R ; Pope, Phil B ; Sullivan, Matthew B ; Roux, Simon ; Wrighton, Kelly C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-5b9099f78fe95de67cad43b11352cc3b4f143f4401981236f755f6191b459aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria - classification</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Computational Biology</topic><topic>Computational Methods</topic><topic>Gastrointestinal Microbiome</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Metabolomics - methods</topic><topic>Metagenome</topic><topic>Molecular Sequence Annotation - methods</topic><topic>Software</topic><topic>Soil Microbiology</topic><topic>Viruses - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaffer, Michael</creatorcontrib><creatorcontrib>Borton, Mikayla A</creatorcontrib><creatorcontrib>McGivern, Bridget B</creatorcontrib><creatorcontrib>Zayed, Ahmed A</creatorcontrib><creatorcontrib>La Rosa, Sabina Leanti</creatorcontrib><creatorcontrib>Solden, Lindsey M</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Narrowe, Adrienne B</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Josué</creatorcontrib><creatorcontrib>Bolduc, Benjamin</creatorcontrib><creatorcontrib>Gazitúa, M Consuelo</creatorcontrib><creatorcontrib>Daly, Rebecca A</creatorcontrib><creatorcontrib>Smith, Garrett J</creatorcontrib><creatorcontrib>Vik, Dean R</creatorcontrib><creatorcontrib>Pope, Phil B</creatorcontrib><creatorcontrib>Sullivan, Matthew B</creatorcontrib><creatorcontrib>Roux, Simon</creatorcontrib><creatorcontrib>Wrighton, Kelly C</creatorcontrib><creatorcontrib>Colorado State Univ., Fort Collins, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaffer, Michael</au><au>Borton, Mikayla A</au><au>McGivern, Bridget B</au><au>Zayed, Ahmed A</au><au>La Rosa, Sabina Leanti</au><au>Solden, Lindsey M</au><au>Liu, Pengfei</au><au>Narrowe, Adrienne B</au><au>Rodríguez-Ramos, Josué</au><au>Bolduc, Benjamin</au><au>Gazitúa, M Consuelo</au><au>Daly, Rebecca A</au><au>Smith, Garrett J</au><au>Vik, Dean R</au><au>Pope, Phil B</au><au>Sullivan, Matthew B</au><au>Roux, Simon</au><au>Wrighton, Kelly C</au><aucorp>Colorado State Univ., Fort Collins, CO (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DRAM for distilling microbial metabolism to automate the curation of microbiome function</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2020-09-18</date><risdate>2020</risdate><volume>48</volume><issue>16</issue><spage>8883</spage><epage>8900</epage><pages>8883-8900</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32766782</pmid><doi>10.1093/nar/gkaa621</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9023-0018</orcidid><orcidid>https://orcid.org/0000-0003-3527-8101</orcidid><orcidid>https://orcid.org/0000-0003-0434-4217</orcidid><orcidid>https://orcid.org/0000000304344217</orcidid><orcidid>https://orcid.org/0000000335278101</orcidid><orcidid>https://orcid.org/0000000190230018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2020-09, Vol.48 (16), p.8883-8900 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7498326 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bacteria - classification BASIC BIOLOGICAL SCIENCES Computational Biology Computational Methods Gastrointestinal Microbiome Genomics - methods Humans Metabolomics - methods Metagenome Molecular Sequence Annotation - methods Software Soil Microbiology Viruses - classification |
title | DRAM for distilling microbial metabolism to automate the curation of microbiome function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DRAM%20for%20distilling%20microbial%20metabolism%20to%20automate%20the%20curation%20of%20microbiome%20function&rft.jtitle=Nucleic%20acids%20research&rft.au=Shaffer,%20Michael&rft.aucorp=Colorado%20State%20Univ.,%20Fort%20Collins,%20CO%20(United%20States)&rft.date=2020-09-18&rft.volume=48&rft.issue=16&rft.spage=8883&rft.epage=8900&rft.pages=8883-8900&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa621&rft_dat=%3Cproquest_pubme%3E2431819437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431819437&rft_id=info:pmid/32766782&rfr_iscdi=true |