DRAM for distilling microbial metabolism to automate the curation of microbiome function

Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2020-09, Vol.48 (16), p.8883-8900
Hauptverfasser: Shaffer, Michael, Borton, Mikayla A, McGivern, Bridget B, Zayed, Ahmed A, La Rosa, Sabina Leanti, Solden, Lindsey M, Liu, Pengfei, Narrowe, Adrienne B, Rodríguez-Ramos, Josué, Bolduc, Benjamin, Gazitúa, M Consuelo, Daly, Rebecca A, Smith, Garrett J, Vik, Dean R, Pope, Phil B, Sullivan, Matthew B, Roux, Simon, Wrighton, Kelly C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8900
container_issue 16
container_start_page 8883
container_title Nucleic acids research
container_volume 48
creator Shaffer, Michael
Borton, Mikayla A
McGivern, Bridget B
Zayed, Ahmed A
La Rosa, Sabina Leanti
Solden, Lindsey M
Liu, Pengfei
Narrowe, Adrienne B
Rodríguez-Ramos, Josué
Bolduc, Benjamin
Gazitúa, M Consuelo
Daly, Rebecca A
Smith, Garrett J
Vik, Dean R
Pope, Phil B
Sullivan, Matthew B
Roux, Simon
Wrighton, Kelly C
description Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.
doi_str_mv 10.1093/nar/gkaa621
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7498326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431819437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-5b9099f78fe95de67cad43b11352cc3b4f143f4401981236f755f6191b459aec3</originalsourceid><addsrcrecordid>eNpVkdtLHTEQxkOp1OPlqe8l9EmQrZncdvMiiNpasBREwbeQzUnOSbubaJIV-t935RxFnwZmfvPN5UPoM5BvQBQ7iSafrP4aIyl8QAtgkjZcSfoRLQgjogHCu120V8ofQoCD4J_QLqOtlG1HF-j-4ubsF_Yp42UoNQxDiCs8BptTH8yAR1dNn4ZQRlwTNlNNo6kO17XDdsqmhhRx8i8NaXTYT9E-pw_QjjdDcYfbuI_uvl_enl81179__Dw_u26sAFkb0SuilG8775RYOtlas-SsB2CCWst67oEzzzkB1QFl0rdCeAkKei6UcZbto9ON7sPUj25pXazZDPohh9HkfzqZoN9XYljrVXrSLVcdo3IW-LoRSPP9uthQnV3bFKOzVYPksgUxQ0fbKTk9Tq5UPYZi3TCY6NJUNOUMOlCctTN6vEHnl5SSnX_dBYh-NkzPhumtYTP95e36r-yLQ-w_H42Tlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431819437</pqid></control><display><type>article</type><title>DRAM for distilling microbial metabolism to automate the curation of microbiome function</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shaffer, Michael ; Borton, Mikayla A ; McGivern, Bridget B ; Zayed, Ahmed A ; La Rosa, Sabina Leanti ; Solden, Lindsey M ; Liu, Pengfei ; Narrowe, Adrienne B ; Rodríguez-Ramos, Josué ; Bolduc, Benjamin ; Gazitúa, M Consuelo ; Daly, Rebecca A ; Smith, Garrett J ; Vik, Dean R ; Pope, Phil B ; Sullivan, Matthew B ; Roux, Simon ; Wrighton, Kelly C</creator><creatorcontrib>Shaffer, Michael ; Borton, Mikayla A ; McGivern, Bridget B ; Zayed, Ahmed A ; La Rosa, Sabina Leanti ; Solden, Lindsey M ; Liu, Pengfei ; Narrowe, Adrienne B ; Rodríguez-Ramos, Josué ; Bolduc, Benjamin ; Gazitúa, M Consuelo ; Daly, Rebecca A ; Smith, Garrett J ; Vik, Dean R ; Pope, Phil B ; Sullivan, Matthew B ; Roux, Simon ; Wrighton, Kelly C ; Colorado State Univ., Fort Collins, CO (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa621</identifier><identifier>PMID: 32766782</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria - classification ; BASIC BIOLOGICAL SCIENCES ; Computational Biology ; Computational Methods ; Gastrointestinal Microbiome ; Genomics - methods ; Humans ; Metabolomics - methods ; Metagenome ; Molecular Sequence Annotation - methods ; Software ; Soil Microbiology ; Viruses - classification</subject><ispartof>Nucleic acids research, 2020-09, Vol.48 (16), p.8883-8900</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-5b9099f78fe95de67cad43b11352cc3b4f143f4401981236f755f6191b459aec3</citedby><cites>FETCH-LOGICAL-c516t-5b9099f78fe95de67cad43b11352cc3b4f143f4401981236f755f6191b459aec3</cites><orcidid>0000-0001-9023-0018 ; 0000-0003-3527-8101 ; 0000-0003-0434-4217 ; 0000000304344217 ; 0000000335278101 ; 0000000190230018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498326/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498326/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32766782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1646715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaffer, Michael</creatorcontrib><creatorcontrib>Borton, Mikayla A</creatorcontrib><creatorcontrib>McGivern, Bridget B</creatorcontrib><creatorcontrib>Zayed, Ahmed A</creatorcontrib><creatorcontrib>La Rosa, Sabina Leanti</creatorcontrib><creatorcontrib>Solden, Lindsey M</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Narrowe, Adrienne B</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Josué</creatorcontrib><creatorcontrib>Bolduc, Benjamin</creatorcontrib><creatorcontrib>Gazitúa, M Consuelo</creatorcontrib><creatorcontrib>Daly, Rebecca A</creatorcontrib><creatorcontrib>Smith, Garrett J</creatorcontrib><creatorcontrib>Vik, Dean R</creatorcontrib><creatorcontrib>Pope, Phil B</creatorcontrib><creatorcontrib>Sullivan, Matthew B</creatorcontrib><creatorcontrib>Roux, Simon</creatorcontrib><creatorcontrib>Wrighton, Kelly C</creatorcontrib><creatorcontrib>Colorado State Univ., Fort Collins, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>DRAM for distilling microbial metabolism to automate the curation of microbiome function</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.</description><subject>Bacteria - classification</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Computational Biology</subject><subject>Computational Methods</subject><subject>Gastrointestinal Microbiome</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Metabolomics - methods</subject><subject>Metagenome</subject><subject>Molecular Sequence Annotation - methods</subject><subject>Software</subject><subject>Soil Microbiology</subject><subject>Viruses - classification</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtLHTEQxkOp1OPlqe8l9EmQrZncdvMiiNpasBREwbeQzUnOSbubaJIV-t935RxFnwZmfvPN5UPoM5BvQBQ7iSafrP4aIyl8QAtgkjZcSfoRLQgjogHCu120V8ofQoCD4J_QLqOtlG1HF-j-4ubsF_Yp42UoNQxDiCs8BptTH8yAR1dNn4ZQRlwTNlNNo6kO17XDdsqmhhRx8i8NaXTYT9E-pw_QjjdDcYfbuI_uvl_enl81179__Dw_u26sAFkb0SuilG8775RYOtlas-SsB2CCWst67oEzzzkB1QFl0rdCeAkKei6UcZbto9ON7sPUj25pXazZDPohh9HkfzqZoN9XYljrVXrSLVcdo3IW-LoRSPP9uthQnV3bFKOzVYPksgUxQ0fbKTk9Tq5UPYZi3TCY6NJUNOUMOlCctTN6vEHnl5SSnX_dBYh-NkzPhumtYTP95e36r-yLQ-w_H42Tlw</recordid><startdate>20200918</startdate><enddate>20200918</enddate><creator>Shaffer, Michael</creator><creator>Borton, Mikayla A</creator><creator>McGivern, Bridget B</creator><creator>Zayed, Ahmed A</creator><creator>La Rosa, Sabina Leanti</creator><creator>Solden, Lindsey M</creator><creator>Liu, Pengfei</creator><creator>Narrowe, Adrienne B</creator><creator>Rodríguez-Ramos, Josué</creator><creator>Bolduc, Benjamin</creator><creator>Gazitúa, M Consuelo</creator><creator>Daly, Rebecca A</creator><creator>Smith, Garrett J</creator><creator>Vik, Dean R</creator><creator>Pope, Phil B</creator><creator>Sullivan, Matthew B</creator><creator>Roux, Simon</creator><creator>Wrighton, Kelly C</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9023-0018</orcidid><orcidid>https://orcid.org/0000-0003-3527-8101</orcidid><orcidid>https://orcid.org/0000-0003-0434-4217</orcidid><orcidid>https://orcid.org/0000000304344217</orcidid><orcidid>https://orcid.org/0000000335278101</orcidid><orcidid>https://orcid.org/0000000190230018</orcidid></search><sort><creationdate>20200918</creationdate><title>DRAM for distilling microbial metabolism to automate the curation of microbiome function</title><author>Shaffer, Michael ; Borton, Mikayla A ; McGivern, Bridget B ; Zayed, Ahmed A ; La Rosa, Sabina Leanti ; Solden, Lindsey M ; Liu, Pengfei ; Narrowe, Adrienne B ; Rodríguez-Ramos, Josué ; Bolduc, Benjamin ; Gazitúa, M Consuelo ; Daly, Rebecca A ; Smith, Garrett J ; Vik, Dean R ; Pope, Phil B ; Sullivan, Matthew B ; Roux, Simon ; Wrighton, Kelly C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-5b9099f78fe95de67cad43b11352cc3b4f143f4401981236f755f6191b459aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria - classification</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Computational Biology</topic><topic>Computational Methods</topic><topic>Gastrointestinal Microbiome</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Metabolomics - methods</topic><topic>Metagenome</topic><topic>Molecular Sequence Annotation - methods</topic><topic>Software</topic><topic>Soil Microbiology</topic><topic>Viruses - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaffer, Michael</creatorcontrib><creatorcontrib>Borton, Mikayla A</creatorcontrib><creatorcontrib>McGivern, Bridget B</creatorcontrib><creatorcontrib>Zayed, Ahmed A</creatorcontrib><creatorcontrib>La Rosa, Sabina Leanti</creatorcontrib><creatorcontrib>Solden, Lindsey M</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Narrowe, Adrienne B</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Josué</creatorcontrib><creatorcontrib>Bolduc, Benjamin</creatorcontrib><creatorcontrib>Gazitúa, M Consuelo</creatorcontrib><creatorcontrib>Daly, Rebecca A</creatorcontrib><creatorcontrib>Smith, Garrett J</creatorcontrib><creatorcontrib>Vik, Dean R</creatorcontrib><creatorcontrib>Pope, Phil B</creatorcontrib><creatorcontrib>Sullivan, Matthew B</creatorcontrib><creatorcontrib>Roux, Simon</creatorcontrib><creatorcontrib>Wrighton, Kelly C</creatorcontrib><creatorcontrib>Colorado State Univ., Fort Collins, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaffer, Michael</au><au>Borton, Mikayla A</au><au>McGivern, Bridget B</au><au>Zayed, Ahmed A</au><au>La Rosa, Sabina Leanti</au><au>Solden, Lindsey M</au><au>Liu, Pengfei</au><au>Narrowe, Adrienne B</au><au>Rodríguez-Ramos, Josué</au><au>Bolduc, Benjamin</au><au>Gazitúa, M Consuelo</au><au>Daly, Rebecca A</au><au>Smith, Garrett J</au><au>Vik, Dean R</au><au>Pope, Phil B</au><au>Sullivan, Matthew B</au><au>Roux, Simon</au><au>Wrighton, Kelly C</au><aucorp>Colorado State Univ., Fort Collins, CO (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DRAM for distilling microbial metabolism to automate the curation of microbiome function</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2020-09-18</date><risdate>2020</risdate><volume>48</volume><issue>16</issue><spage>8883</spage><epage>8900</epage><pages>8883-8900</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32766782</pmid><doi>10.1093/nar/gkaa621</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9023-0018</orcidid><orcidid>https://orcid.org/0000-0003-3527-8101</orcidid><orcidid>https://orcid.org/0000-0003-0434-4217</orcidid><orcidid>https://orcid.org/0000000304344217</orcidid><orcidid>https://orcid.org/0000000335278101</orcidid><orcidid>https://orcid.org/0000000190230018</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2020-09, Vol.48 (16), p.8883-8900
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7498326
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bacteria - classification
BASIC BIOLOGICAL SCIENCES
Computational Biology
Computational Methods
Gastrointestinal Microbiome
Genomics - methods
Humans
Metabolomics - methods
Metagenome
Molecular Sequence Annotation - methods
Software
Soil Microbiology
Viruses - classification
title DRAM for distilling microbial metabolism to automate the curation of microbiome function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DRAM%20for%20distilling%20microbial%20metabolism%20to%20automate%20the%20curation%20of%20microbiome%20function&rft.jtitle=Nucleic%20acids%20research&rft.au=Shaffer,%20Michael&rft.aucorp=Colorado%20State%20Univ.,%20Fort%20Collins,%20CO%20(United%20States)&rft.date=2020-09-18&rft.volume=48&rft.issue=16&rft.spage=8883&rft.epage=8900&rft.pages=8883-8900&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa621&rft_dat=%3Cproquest_pubme%3E2431819437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431819437&rft_id=info:pmid/32766782&rfr_iscdi=true