Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity

Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocamp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2020-07, Vol.182 (2), p.388-403.e15
Hauptverfasser: Nguyen, Phi T., Dorman, Leah C., Pan, Simon, Vainchtein, Ilia D., Han, Rafael T., Nakao-Inoue, Hiromi, Taloma, Sunrae E., Barron, Jerika J., Molofsky, Ari B., Kheirbek, Mazen A., Molofsky, Anna V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403.e15
container_issue 2
container_start_page 388
container_title Cell
container_volume 182
creator Nguyen, Phi T.
Dorman, Leah C.
Pan, Simon
Vainchtein, Ilia D.
Han, Rafael T.
Nakao-Inoue, Hiromi
Taloma, Sunrae E.
Barron, Jerika J.
Molofsky, Ari B.
Kheirbek, Mazen A.
Molofsky, Anna V.
description Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation. [Display omitted] •IL-33 is expressed by subsets of hippocampal neurons and is modulated by experience•Microglia drive dendritic spine plasticity and memory precision via neuronal IL-33•IL-33 gain of function mitigates some age-related decreases in spine plasticity•Neuronal IL-33 induces microglial remodeling of the extracellular matrix A form of experience-dependent neuron-microglial communication is mediated by IL-33, which promotes hippocampal dendritic spine formation, synapse plasticity, and ECM engulfment and is required for memory consolidation.
doi_str_mv 10.1016/j.cell.2020.05.050
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420306838</els_id><sourcerecordid>2420145951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-a78d29a4525260f76a6ac9686e501813774b39991cc4725e737d6582bae4f3583</originalsourceid><addsrcrecordid>eNqNUV2LFDEQDKJ46-kf8EHmUZBZO5lkkgERZDk_4BYPP55DNtOzl2VmsiaZ8_bfm2HXRV9EaEigq6qruwh5TmFJgdavd0uLfb9kwGAJIhc8IAsKjSw5lewhWQA0rFS15BfkSYw7AFBCiMfkomI1FaDkgqzXzga_7Z3piy84-BZ7N24L3xXpFour-xTMPGTqTSjWJgV3X9wEP_iEsfh6GM0-YnHTm5icdenwlDzqTB_x2em9JN_fX31bfSyvP3_4tHp3XVohIZVGqpY1hgsmWA2drE1tbFOrGgVQRSsp-aZqmoZayyUTKCvZ1kKxjUHeVUJVl-TtUXc_bQZsLY7ZZ6_3wQ0mHLQ3Tv_dGd2t3vo7LXkjJZsFXp4Egv8xYUx6cHFe1Izop6gZZ0C5aATNUHaE5jvFGLA7j6Gg5xz0Ts9MPeegQeSCTHrxp8Ez5ffhM-DVEfATN76L1uFo8QzLSQnBJBf5A3T2oP4fvXLJJOfHlZ_GlKlvjlTMedw5DPpEb11Am3Tr3b8W-QXwlLqE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420145951</pqid></control><display><type>article</type><title>Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nguyen, Phi T. ; Dorman, Leah C. ; Pan, Simon ; Vainchtein, Ilia D. ; Han, Rafael T. ; Nakao-Inoue, Hiromi ; Taloma, Sunrae E. ; Barron, Jerika J. ; Molofsky, Ari B. ; Kheirbek, Mazen A. ; Molofsky, Anna V.</creator><creatorcontrib>Nguyen, Phi T. ; Dorman, Leah C. ; Pan, Simon ; Vainchtein, Ilia D. ; Han, Rafael T. ; Nakao-Inoue, Hiromi ; Taloma, Sunrae E. ; Barron, Jerika J. ; Molofsky, Ari B. ; Kheirbek, Mazen A. ; Molofsky, Anna V.</creatorcontrib><description>Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation. [Display omitted] •IL-33 is expressed by subsets of hippocampal neurons and is modulated by experience•Microglia drive dendritic spine plasticity and memory precision via neuronal IL-33•IL-33 gain of function mitigates some age-related decreases in spine plasticity•Neuronal IL-33 induces microglial remodeling of the extracellular matrix A form of experience-dependent neuron-microglial communication is mediated by IL-33, which promotes hippocampal dendritic spine formation, synapse plasticity, and ECM engulfment and is required for memory consolidation.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.05.050</identifier><identifier>PMID: 32615087</identifier><language>eng</language><publisher>CAMBRIDGE: Elsevier Inc</publisher><subject>Aging ; Animals ; Biochemistry &amp; Molecular Biology ; Cell Biology ; Extracellular Matrix - metabolism ; Fear ; Gene Expression Regulation ; Hippocampus - metabolism ; Interleukin-1 Receptor-Like 1 Protein - genetics ; Interleukin-1 Receptor-Like 1 Protein - metabolism ; Interleukin-33 - genetics ; Interleukin-33 - metabolism ; Life Sciences &amp; Biomedicine ; Memory ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglia - physiology ; microglia, hippocampus, extracellular matrix, aging, memory, dendrite remodeling, interleukin-33 ; Neuronal Plasticity - physiology ; Neurons - metabolism ; Science &amp; Technology ; Signal Transduction</subject><ispartof>Cell, 2020-07, Vol.182 (2), p.388-403.e15</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>325</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000552745000011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c570t-a78d29a4525260f76a6ac9686e501813774b39991cc4725e737d6582bae4f3583</citedby><cites>FETCH-LOGICAL-c570t-a78d29a4525260f76a6ac9686e501813774b39991cc4725e737d6582bae4f3583</cites><orcidid>0000-0002-4709-2411 ; 0000-0001-5418-0973 ; 0000-0003-2847-0584 ; 0000-0002-7210-8614 ; 0000-0001-9157-7363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867420306838$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32615087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Phi T.</creatorcontrib><creatorcontrib>Dorman, Leah C.</creatorcontrib><creatorcontrib>Pan, Simon</creatorcontrib><creatorcontrib>Vainchtein, Ilia D.</creatorcontrib><creatorcontrib>Han, Rafael T.</creatorcontrib><creatorcontrib>Nakao-Inoue, Hiromi</creatorcontrib><creatorcontrib>Taloma, Sunrae E.</creatorcontrib><creatorcontrib>Barron, Jerika J.</creatorcontrib><creatorcontrib>Molofsky, Ari B.</creatorcontrib><creatorcontrib>Kheirbek, Mazen A.</creatorcontrib><creatorcontrib>Molofsky, Anna V.</creatorcontrib><title>Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity</title><title>Cell</title><addtitle>CELL</addtitle><addtitle>Cell</addtitle><description>Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation. [Display omitted] •IL-33 is expressed by subsets of hippocampal neurons and is modulated by experience•Microglia drive dendritic spine plasticity and memory precision via neuronal IL-33•IL-33 gain of function mitigates some age-related decreases in spine plasticity•Neuronal IL-33 induces microglial remodeling of the extracellular matrix A form of experience-dependent neuron-microglial communication is mediated by IL-33, which promotes hippocampal dendritic spine formation, synapse plasticity, and ECM engulfment and is required for memory consolidation.</description><subject>Aging</subject><subject>Animals</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Cell Biology</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fear</subject><subject>Gene Expression Regulation</subject><subject>Hippocampus - metabolism</subject><subject>Interleukin-1 Receptor-Like 1 Protein - genetics</subject><subject>Interleukin-1 Receptor-Like 1 Protein - metabolism</subject><subject>Interleukin-33 - genetics</subject><subject>Interleukin-33 - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Memory</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microglia - physiology</subject><subject>microglia, hippocampus, extracellular matrix, aging, memory, dendrite remodeling, interleukin-33</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - metabolism</subject><subject>Science &amp; Technology</subject><subject>Signal Transduction</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNUV2LFDEQDKJ46-kf8EHmUZBZO5lkkgERZDk_4BYPP55DNtOzl2VmsiaZ8_bfm2HXRV9EaEigq6qruwh5TmFJgdavd0uLfb9kwGAJIhc8IAsKjSw5lewhWQA0rFS15BfkSYw7AFBCiMfkomI1FaDkgqzXzga_7Z3piy84-BZ7N24L3xXpFour-xTMPGTqTSjWJgV3X9wEP_iEsfh6GM0-YnHTm5icdenwlDzqTB_x2em9JN_fX31bfSyvP3_4tHp3XVohIZVGqpY1hgsmWA2drE1tbFOrGgVQRSsp-aZqmoZayyUTKCvZ1kKxjUHeVUJVl-TtUXc_bQZsLY7ZZ6_3wQ0mHLQ3Tv_dGd2t3vo7LXkjJZsFXp4Egv8xYUx6cHFe1Izop6gZZ0C5aATNUHaE5jvFGLA7j6Gg5xz0Ts9MPeegQeSCTHrxp8Ez5ffhM-DVEfATN76L1uFo8QzLSQnBJBf5A3T2oP4fvXLJJOfHlZ_GlKlvjlTMedw5DPpEb11Am3Tr3b8W-QXwlLqE</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Nguyen, Phi T.</creator><creator>Dorman, Leah C.</creator><creator>Pan, Simon</creator><creator>Vainchtein, Ilia D.</creator><creator>Han, Rafael T.</creator><creator>Nakao-Inoue, Hiromi</creator><creator>Taloma, Sunrae E.</creator><creator>Barron, Jerika J.</creator><creator>Molofsky, Ari B.</creator><creator>Kheirbek, Mazen A.</creator><creator>Molofsky, Anna V.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4709-2411</orcidid><orcidid>https://orcid.org/0000-0001-5418-0973</orcidid><orcidid>https://orcid.org/0000-0003-2847-0584</orcidid><orcidid>https://orcid.org/0000-0002-7210-8614</orcidid><orcidid>https://orcid.org/0000-0001-9157-7363</orcidid></search><sort><creationdate>20200723</creationdate><title>Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity</title><author>Nguyen, Phi T. ; Dorman, Leah C. ; Pan, Simon ; Vainchtein, Ilia D. ; Han, Rafael T. ; Nakao-Inoue, Hiromi ; Taloma, Sunrae E. ; Barron, Jerika J. ; Molofsky, Ari B. ; Kheirbek, Mazen A. ; Molofsky, Anna V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-a78d29a4525260f76a6ac9686e501813774b39991cc4725e737d6582bae4f3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Animals</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Cell Biology</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fear</topic><topic>Gene Expression Regulation</topic><topic>Hippocampus - metabolism</topic><topic>Interleukin-1 Receptor-Like 1 Protein - genetics</topic><topic>Interleukin-1 Receptor-Like 1 Protein - metabolism</topic><topic>Interleukin-33 - genetics</topic><topic>Interleukin-33 - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Memory</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microglia - physiology</topic><topic>microglia, hippocampus, extracellular matrix, aging, memory, dendrite remodeling, interleukin-33</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - metabolism</topic><topic>Science &amp; Technology</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Phi T.</creatorcontrib><creatorcontrib>Dorman, Leah C.</creatorcontrib><creatorcontrib>Pan, Simon</creatorcontrib><creatorcontrib>Vainchtein, Ilia D.</creatorcontrib><creatorcontrib>Han, Rafael T.</creatorcontrib><creatorcontrib>Nakao-Inoue, Hiromi</creatorcontrib><creatorcontrib>Taloma, Sunrae E.</creatorcontrib><creatorcontrib>Barron, Jerika J.</creatorcontrib><creatorcontrib>Molofsky, Ari B.</creatorcontrib><creatorcontrib>Kheirbek, Mazen A.</creatorcontrib><creatorcontrib>Molofsky, Anna V.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Phi T.</au><au>Dorman, Leah C.</au><au>Pan, Simon</au><au>Vainchtein, Ilia D.</au><au>Han, Rafael T.</au><au>Nakao-Inoue, Hiromi</au><au>Taloma, Sunrae E.</au><au>Barron, Jerika J.</au><au>Molofsky, Ari B.</au><au>Kheirbek, Mazen A.</au><au>Molofsky, Anna V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity</atitle><jtitle>Cell</jtitle><stitle>CELL</stitle><addtitle>Cell</addtitle><date>2020-07-23</date><risdate>2020</risdate><volume>182</volume><issue>2</issue><spage>388</spage><epage>403.e15</epage><pages>388-403.e15</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation. [Display omitted] •IL-33 is expressed by subsets of hippocampal neurons and is modulated by experience•Microglia drive dendritic spine plasticity and memory precision via neuronal IL-33•IL-33 gain of function mitigates some age-related decreases in spine plasticity•Neuronal IL-33 induces microglial remodeling of the extracellular matrix A form of experience-dependent neuron-microglial communication is mediated by IL-33, which promotes hippocampal dendritic spine formation, synapse plasticity, and ECM engulfment and is required for memory consolidation.</abstract><cop>CAMBRIDGE</cop><pub>Elsevier Inc</pub><pmid>32615087</pmid><doi>10.1016/j.cell.2020.05.050</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-4709-2411</orcidid><orcidid>https://orcid.org/0000-0001-5418-0973</orcidid><orcidid>https://orcid.org/0000-0003-2847-0584</orcidid><orcidid>https://orcid.org/0000-0002-7210-8614</orcidid><orcidid>https://orcid.org/0000-0001-9157-7363</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2020-07, Vol.182 (2), p.388-403.e15
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497728
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aging
Animals
Biochemistry & Molecular Biology
Cell Biology
Extracellular Matrix - metabolism
Fear
Gene Expression Regulation
Hippocampus - metabolism
Interleukin-1 Receptor-Like 1 Protein - genetics
Interleukin-1 Receptor-Like 1 Protein - metabolism
Interleukin-33 - genetics
Interleukin-33 - metabolism
Life Sciences & Biomedicine
Memory
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microglia - physiology
microglia, hippocampus, extracellular matrix, aging, memory, dendrite remodeling, interleukin-33
Neuronal Plasticity - physiology
Neurons - metabolism
Science & Technology
Signal Transduction
title Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microglial%20Remodeling%20of%20the%20Extracellular%20Matrix%20Promotes%20Synapse%20Plasticity&rft.jtitle=Cell&rft.au=Nguyen,%20Phi%20T.&rft.date=2020-07-23&rft.volume=182&rft.issue=2&rft.spage=388&rft.epage=403.e15&rft.pages=388-403.e15&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.05.050&rft_dat=%3Cproquest_webof%3E2420145951%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420145951&rft_id=info:pmid/32615087&rft_els_id=S0092867420306838&rfr_iscdi=true