Artificial Double-Helix for Geometrical Control of Magnetic Chirality
Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-07, Vol.14 (7), p.8084-8092 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8092 |
---|---|
container_issue | 7 |
container_start_page | 8084 |
container_title | ACS nano |
container_volume | 14 |
creator | Sanz-Hernández, Dédalo Hierro-Rodriguez, Aurelio Donnelly, Claire Pablo-Navarro, Javier Sorrentino, Andrea Pereiro, Eva Magén, César McVitie, Stephen de Teresa, José María Ferrer, Salvador Fischer, Peter Fernández-Pacheco, Amalio |
description | Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality. |
doi_str_mv | 10.1021/acsnano.0c00720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421112134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a556t-7c60a7ed20df52d352618fd63efc7b6b81db7da47bcf79b81b8dac5debcb635a3</originalsourceid><addsrcrecordid>eNp1kctrVDEUh4MotlbX7uTiSpHb5nGT3NkIw1g7hSluFNyFPDspmaQmucX-96bccWgFV3mcLx8n5wfAWwRPEcToTOoSZUynUEPIMXwGjtGCsB6O7Ofzw56iI_CqlBsIKR85ewmOCGaEDAt8DM6XuXrntZeh-5ImFWy_tsH_7lzK3YVNO1uz1624SrHmFLrkuit5HW31ulttfZbB1_vX4IWTodg3-_UE_Ph6_n217jffLi5Xy00vKWW155pBya3B0DiKDaGYodEZRqzTXDE1IqO4kQNX2vFFO6rRSE2NVVoxQiU5AZ9n7-2kdtZo23qSQdxmv5P5XiTpxdNK9Ftxne4EHxac0bEJ3s-CVKoXRftq9VanGK2uAjHCOcIN-jhD23_c6-VGPNxBPLbJQnaHGvth31FOvyZbqtj5om0IMto0FYEHjBDCiAwNPZtRnVMp2bqDG0HxkKbYpyn2abYX7x5_98D_ja8Bn2agvRQ3acqxTf-_uj_2pqu9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421112134</pqid></control><display><type>article</type><title>Artificial Double-Helix for Geometrical Control of Magnetic Chirality</title><source>American Chemical Society Journals</source><creator>Sanz-Hernández, Dédalo ; Hierro-Rodriguez, Aurelio ; Donnelly, Claire ; Pablo-Navarro, Javier ; Sorrentino, Andrea ; Pereiro, Eva ; Magén, César ; McVitie, Stephen ; de Teresa, José María ; Ferrer, Salvador ; Fischer, Peter ; Fernández-Pacheco, Amalio</creator><creatorcontrib>Sanz-Hernández, Dédalo ; Hierro-Rodriguez, Aurelio ; Donnelly, Claire ; Pablo-Navarro, Javier ; Sorrentino, Andrea ; Pereiro, Eva ; Magén, César ; McVitie, Stephen ; de Teresa, José María ; Ferrer, Salvador ; Fischer, Peter ; Fernández-Pacheco, Amalio ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c00720</identifier><identifier>PMID: 32633492</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chirality ; Condensed Matter ; double-helix ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mesoscopic Systems and Quantum Hall Effect ; nanomagnetic ; nanoprinting ; Physics ; topological ; X-ray</subject><ispartof>ACS nano, 2020-07, Vol.14 (7), p.8084-8092</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a556t-7c60a7ed20df52d352618fd63efc7b6b81db7da47bcf79b81b8dac5debcb635a3</citedby><cites>FETCH-LOGICAL-a556t-7c60a7ed20df52d352618fd63efc7b6b81db7da47bcf79b81b8dac5debcb635a3</cites><orcidid>0000-0002-5552-8836 ; 0000-0003-4511-6413 ; 0000-0002-3862-8472 ; 0000-0002-9942-2419 ; 0000-0001-9566-0738 ; 0000-0001-6600-7801 ; 0000-0002-6761-6171 ; 0000000166007801 ; 0000000255528836 ; 0000000345116413 ; 0000000195660738 ; 0000000238628472 ; 0000000299422419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c00720$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c00720$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32633492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02893606$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1637712$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanz-Hernández, Dédalo</creatorcontrib><creatorcontrib>Hierro-Rodriguez, Aurelio</creatorcontrib><creatorcontrib>Donnelly, Claire</creatorcontrib><creatorcontrib>Pablo-Navarro, Javier</creatorcontrib><creatorcontrib>Sorrentino, Andrea</creatorcontrib><creatorcontrib>Pereiro, Eva</creatorcontrib><creatorcontrib>Magén, César</creatorcontrib><creatorcontrib>McVitie, Stephen</creatorcontrib><creatorcontrib>de Teresa, José María</creatorcontrib><creatorcontrib>Ferrer, Salvador</creatorcontrib><creatorcontrib>Fischer, Peter</creatorcontrib><creatorcontrib>Fernández-Pacheco, Amalio</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Artificial Double-Helix for Geometrical Control of Magnetic Chirality</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.</description><subject>chirality</subject><subject>Condensed Matter</subject><subject>double-helix</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>nanomagnetic</subject><subject>nanoprinting</subject><subject>Physics</subject><subject>topological</subject><subject>X-ray</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kctrVDEUh4MotlbX7uTiSpHb5nGT3NkIw1g7hSluFNyFPDspmaQmucX-96bccWgFV3mcLx8n5wfAWwRPEcToTOoSZUynUEPIMXwGjtGCsB6O7Ofzw56iI_CqlBsIKR85ewmOCGaEDAt8DM6XuXrntZeh-5ImFWy_tsH_7lzK3YVNO1uz1624SrHmFLrkuit5HW31ulttfZbB1_vX4IWTodg3-_UE_Ph6_n217jffLi5Xy00vKWW155pBya3B0DiKDaGYodEZRqzTXDE1IqO4kQNX2vFFO6rRSE2NVVoxQiU5AZ9n7-2kdtZo23qSQdxmv5P5XiTpxdNK9Ftxne4EHxac0bEJ3s-CVKoXRftq9VanGK2uAjHCOcIN-jhD23_c6-VGPNxBPLbJQnaHGvth31FOvyZbqtj5om0IMto0FYEHjBDCiAwNPZtRnVMp2bqDG0HxkKbYpyn2abYX7x5_98D_ja8Bn2agvRQ3acqxTf-_uj_2pqu9</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Sanz-Hernández, Dédalo</creator><creator>Hierro-Rodriguez, Aurelio</creator><creator>Donnelly, Claire</creator><creator>Pablo-Navarro, Javier</creator><creator>Sorrentino, Andrea</creator><creator>Pereiro, Eva</creator><creator>Magén, César</creator><creator>McVitie, Stephen</creator><creator>de Teresa, José María</creator><creator>Ferrer, Salvador</creator><creator>Fischer, Peter</creator><creator>Fernández-Pacheco, Amalio</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5552-8836</orcidid><orcidid>https://orcid.org/0000-0003-4511-6413</orcidid><orcidid>https://orcid.org/0000-0002-3862-8472</orcidid><orcidid>https://orcid.org/0000-0002-9942-2419</orcidid><orcidid>https://orcid.org/0000-0001-9566-0738</orcidid><orcidid>https://orcid.org/0000-0001-6600-7801</orcidid><orcidid>https://orcid.org/0000-0002-6761-6171</orcidid><orcidid>https://orcid.org/0000000166007801</orcidid><orcidid>https://orcid.org/0000000255528836</orcidid><orcidid>https://orcid.org/0000000345116413</orcidid><orcidid>https://orcid.org/0000000195660738</orcidid><orcidid>https://orcid.org/0000000238628472</orcidid><orcidid>https://orcid.org/0000000299422419</orcidid></search><sort><creationdate>20200728</creationdate><title>Artificial Double-Helix for Geometrical Control of Magnetic Chirality</title><author>Sanz-Hernández, Dédalo ; Hierro-Rodriguez, Aurelio ; Donnelly, Claire ; Pablo-Navarro, Javier ; Sorrentino, Andrea ; Pereiro, Eva ; Magén, César ; McVitie, Stephen ; de Teresa, José María ; Ferrer, Salvador ; Fischer, Peter ; Fernández-Pacheco, Amalio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a556t-7c60a7ed20df52d352618fd63efc7b6b81db7da47bcf79b81b8dac5debcb635a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>chirality</topic><topic>Condensed Matter</topic><topic>double-helix</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>nanomagnetic</topic><topic>nanoprinting</topic><topic>Physics</topic><topic>topological</topic><topic>X-ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz-Hernández, Dédalo</creatorcontrib><creatorcontrib>Hierro-Rodriguez, Aurelio</creatorcontrib><creatorcontrib>Donnelly, Claire</creatorcontrib><creatorcontrib>Pablo-Navarro, Javier</creatorcontrib><creatorcontrib>Sorrentino, Andrea</creatorcontrib><creatorcontrib>Pereiro, Eva</creatorcontrib><creatorcontrib>Magén, César</creatorcontrib><creatorcontrib>McVitie, Stephen</creatorcontrib><creatorcontrib>de Teresa, José María</creatorcontrib><creatorcontrib>Ferrer, Salvador</creatorcontrib><creatorcontrib>Fischer, Peter</creatorcontrib><creatorcontrib>Fernández-Pacheco, Amalio</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz-Hernández, Dédalo</au><au>Hierro-Rodriguez, Aurelio</au><au>Donnelly, Claire</au><au>Pablo-Navarro, Javier</au><au>Sorrentino, Andrea</au><au>Pereiro, Eva</au><au>Magén, César</au><au>McVitie, Stephen</au><au>de Teresa, José María</au><au>Ferrer, Salvador</au><au>Fischer, Peter</au><au>Fernández-Pacheco, Amalio</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Double-Helix for Geometrical Control of Magnetic Chirality</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-07-28</date><risdate>2020</risdate><volume>14</volume><issue>7</issue><spage>8084</spage><epage>8092</epage><pages>8084-8092</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32633492</pmid><doi>10.1021/acsnano.0c00720</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5552-8836</orcidid><orcidid>https://orcid.org/0000-0003-4511-6413</orcidid><orcidid>https://orcid.org/0000-0002-3862-8472</orcidid><orcidid>https://orcid.org/0000-0002-9942-2419</orcidid><orcidid>https://orcid.org/0000-0001-9566-0738</orcidid><orcidid>https://orcid.org/0000-0001-6600-7801</orcidid><orcidid>https://orcid.org/0000-0002-6761-6171</orcidid><orcidid>https://orcid.org/0000000166007801</orcidid><orcidid>https://orcid.org/0000000255528836</orcidid><orcidid>https://orcid.org/0000000345116413</orcidid><orcidid>https://orcid.org/0000000195660738</orcidid><orcidid>https://orcid.org/0000000238628472</orcidid><orcidid>https://orcid.org/0000000299422419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-07, Vol.14 (7), p.8084-8092 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497658 |
source | American Chemical Society Journals |
subjects | chirality Condensed Matter double-helix INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Mesoscopic Systems and Quantum Hall Effect nanomagnetic nanoprinting Physics topological X-ray |
title | Artificial Double-Helix for Geometrical Control of Magnetic Chirality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Double-Helix%20for%20Geometrical%20Control%20of%20Magnetic%20Chirality&rft.jtitle=ACS%20nano&rft.au=Sanz-Herna%CC%81ndez,%20De%CC%81dalo&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-07-28&rft.volume=14&rft.issue=7&rft.spage=8084&rft.epage=8092&rft.pages=8084-8092&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c00720&rft_dat=%3Cproquest_pubme%3E2421112134%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421112134&rft_id=info:pmid/32633492&rfr_iscdi=true |