Artificial Double-Helix for Geometrical Control of Magnetic Chirality

Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-07, Vol.14 (7), p.8084-8092
Hauptverfasser: Sanz-Hernández, Dédalo, Hierro-Rodriguez, Aurelio, Donnelly, Claire, Pablo-Navarro, Javier, Sorrentino, Andrea, Pereiro, Eva, Magén, César, McVitie, Stephen, de Teresa, José María, Ferrer, Salvador, Fischer, Peter, Fernández-Pacheco, Amalio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8092
container_issue 7
container_start_page 8084
container_title ACS nano
container_volume 14
creator Sanz-Hernández, Dédalo
Hierro-Rodriguez, Aurelio
Donnelly, Claire
Pablo-Navarro, Javier
Sorrentino, Andrea
Pereiro, Eva
Magén, César
McVitie, Stephen
de Teresa, José María
Ferrer, Salvador
Fischer, Peter
Fernández-Pacheco, Amalio
description Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.
doi_str_mv 10.1021/acsnano.0c00720
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421112134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a556t-7c60a7ed20df52d352618fd63efc7b6b81db7da47bcf79b81b8dac5debcb635a3</originalsourceid><addsrcrecordid>eNp1kctrVDEUh4MotlbX7uTiSpHb5nGT3NkIw1g7hSluFNyFPDspmaQmucX-96bccWgFV3mcLx8n5wfAWwRPEcToTOoSZUynUEPIMXwGjtGCsB6O7Ofzw56iI_CqlBsIKR85ewmOCGaEDAt8DM6XuXrntZeh-5ImFWy_tsH_7lzK3YVNO1uz1624SrHmFLrkuit5HW31ulttfZbB1_vX4IWTodg3-_UE_Ph6_n217jffLi5Xy00vKWW155pBya3B0DiKDaGYodEZRqzTXDE1IqO4kQNX2vFFO6rRSE2NVVoxQiU5AZ9n7-2kdtZo23qSQdxmv5P5XiTpxdNK9Ftxne4EHxac0bEJ3s-CVKoXRftq9VanGK2uAjHCOcIN-jhD23_c6-VGPNxBPLbJQnaHGvth31FOvyZbqtj5om0IMto0FYEHjBDCiAwNPZtRnVMp2bqDG0HxkKbYpyn2abYX7x5_98D_ja8Bn2agvRQ3acqxTf-_uj_2pqu9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421112134</pqid></control><display><type>article</type><title>Artificial Double-Helix for Geometrical Control of Magnetic Chirality</title><source>American Chemical Society Journals</source><creator>Sanz-Hernández, Dédalo ; Hierro-Rodriguez, Aurelio ; Donnelly, Claire ; Pablo-Navarro, Javier ; Sorrentino, Andrea ; Pereiro, Eva ; Magén, César ; McVitie, Stephen ; de Teresa, José María ; Ferrer, Salvador ; Fischer, Peter ; Fernández-Pacheco, Amalio</creator><creatorcontrib>Sanz-Hernández, Dédalo ; Hierro-Rodriguez, Aurelio ; Donnelly, Claire ; Pablo-Navarro, Javier ; Sorrentino, Andrea ; Pereiro, Eva ; Magén, César ; McVitie, Stephen ; de Teresa, José María ; Ferrer, Salvador ; Fischer, Peter ; Fernández-Pacheco, Amalio ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c00720</identifier><identifier>PMID: 32633492</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chirality ; Condensed Matter ; double-helix ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mesoscopic Systems and Quantum Hall Effect ; nanomagnetic ; nanoprinting ; Physics ; topological ; X-ray</subject><ispartof>ACS nano, 2020-07, Vol.14 (7), p.8084-8092</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a556t-7c60a7ed20df52d352618fd63efc7b6b81db7da47bcf79b81b8dac5debcb635a3</citedby><cites>FETCH-LOGICAL-a556t-7c60a7ed20df52d352618fd63efc7b6b81db7da47bcf79b81b8dac5debcb635a3</cites><orcidid>0000-0002-5552-8836 ; 0000-0003-4511-6413 ; 0000-0002-3862-8472 ; 0000-0002-9942-2419 ; 0000-0001-9566-0738 ; 0000-0001-6600-7801 ; 0000-0002-6761-6171 ; 0000000166007801 ; 0000000255528836 ; 0000000345116413 ; 0000000195660738 ; 0000000238628472 ; 0000000299422419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c00720$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c00720$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32633492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02893606$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1637712$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanz-Hernández, Dédalo</creatorcontrib><creatorcontrib>Hierro-Rodriguez, Aurelio</creatorcontrib><creatorcontrib>Donnelly, Claire</creatorcontrib><creatorcontrib>Pablo-Navarro, Javier</creatorcontrib><creatorcontrib>Sorrentino, Andrea</creatorcontrib><creatorcontrib>Pereiro, Eva</creatorcontrib><creatorcontrib>Magén, César</creatorcontrib><creatorcontrib>McVitie, Stephen</creatorcontrib><creatorcontrib>de Teresa, José María</creatorcontrib><creatorcontrib>Ferrer, Salvador</creatorcontrib><creatorcontrib>Fischer, Peter</creatorcontrib><creatorcontrib>Fernández-Pacheco, Amalio</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Artificial Double-Helix for Geometrical Control of Magnetic Chirality</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.</description><subject>chirality</subject><subject>Condensed Matter</subject><subject>double-helix</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>nanomagnetic</subject><subject>nanoprinting</subject><subject>Physics</subject><subject>topological</subject><subject>X-ray</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kctrVDEUh4MotlbX7uTiSpHb5nGT3NkIw1g7hSluFNyFPDspmaQmucX-96bccWgFV3mcLx8n5wfAWwRPEcToTOoSZUynUEPIMXwGjtGCsB6O7Ofzw56iI_CqlBsIKR85ewmOCGaEDAt8DM6XuXrntZeh-5ImFWy_tsH_7lzK3YVNO1uz1624SrHmFLrkuit5HW31ulttfZbB1_vX4IWTodg3-_UE_Ph6_n217jffLi5Xy00vKWW155pBya3B0DiKDaGYodEZRqzTXDE1IqO4kQNX2vFFO6rRSE2NVVoxQiU5AZ9n7-2kdtZo23qSQdxmv5P5XiTpxdNK9Ftxne4EHxac0bEJ3s-CVKoXRftq9VanGK2uAjHCOcIN-jhD23_c6-VGPNxBPLbJQnaHGvth31FOvyZbqtj5om0IMto0FYEHjBDCiAwNPZtRnVMp2bqDG0HxkKbYpyn2abYX7x5_98D_ja8Bn2agvRQ3acqxTf-_uj_2pqu9</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Sanz-Hernández, Dédalo</creator><creator>Hierro-Rodriguez, Aurelio</creator><creator>Donnelly, Claire</creator><creator>Pablo-Navarro, Javier</creator><creator>Sorrentino, Andrea</creator><creator>Pereiro, Eva</creator><creator>Magén, César</creator><creator>McVitie, Stephen</creator><creator>de Teresa, José María</creator><creator>Ferrer, Salvador</creator><creator>Fischer, Peter</creator><creator>Fernández-Pacheco, Amalio</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5552-8836</orcidid><orcidid>https://orcid.org/0000-0003-4511-6413</orcidid><orcidid>https://orcid.org/0000-0002-3862-8472</orcidid><orcidid>https://orcid.org/0000-0002-9942-2419</orcidid><orcidid>https://orcid.org/0000-0001-9566-0738</orcidid><orcidid>https://orcid.org/0000-0001-6600-7801</orcidid><orcidid>https://orcid.org/0000-0002-6761-6171</orcidid><orcidid>https://orcid.org/0000000166007801</orcidid><orcidid>https://orcid.org/0000000255528836</orcidid><orcidid>https://orcid.org/0000000345116413</orcidid><orcidid>https://orcid.org/0000000195660738</orcidid><orcidid>https://orcid.org/0000000238628472</orcidid><orcidid>https://orcid.org/0000000299422419</orcidid></search><sort><creationdate>20200728</creationdate><title>Artificial Double-Helix for Geometrical Control of Magnetic Chirality</title><author>Sanz-Hernández, Dédalo ; Hierro-Rodriguez, Aurelio ; Donnelly, Claire ; Pablo-Navarro, Javier ; Sorrentino, Andrea ; Pereiro, Eva ; Magén, César ; McVitie, Stephen ; de Teresa, José María ; Ferrer, Salvador ; Fischer, Peter ; Fernández-Pacheco, Amalio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a556t-7c60a7ed20df52d352618fd63efc7b6b81db7da47bcf79b81b8dac5debcb635a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>chirality</topic><topic>Condensed Matter</topic><topic>double-helix</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>nanomagnetic</topic><topic>nanoprinting</topic><topic>Physics</topic><topic>topological</topic><topic>X-ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz-Hernández, Dédalo</creatorcontrib><creatorcontrib>Hierro-Rodriguez, Aurelio</creatorcontrib><creatorcontrib>Donnelly, Claire</creatorcontrib><creatorcontrib>Pablo-Navarro, Javier</creatorcontrib><creatorcontrib>Sorrentino, Andrea</creatorcontrib><creatorcontrib>Pereiro, Eva</creatorcontrib><creatorcontrib>Magén, César</creatorcontrib><creatorcontrib>McVitie, Stephen</creatorcontrib><creatorcontrib>de Teresa, José María</creatorcontrib><creatorcontrib>Ferrer, Salvador</creatorcontrib><creatorcontrib>Fischer, Peter</creatorcontrib><creatorcontrib>Fernández-Pacheco, Amalio</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz-Hernández, Dédalo</au><au>Hierro-Rodriguez, Aurelio</au><au>Donnelly, Claire</au><au>Pablo-Navarro, Javier</au><au>Sorrentino, Andrea</au><au>Pereiro, Eva</au><au>Magén, César</au><au>McVitie, Stephen</au><au>de Teresa, José María</au><au>Ferrer, Salvador</au><au>Fischer, Peter</au><au>Fernández-Pacheco, Amalio</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Double-Helix for Geometrical Control of Magnetic Chirality</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-07-28</date><risdate>2020</risdate><volume>14</volume><issue>7</issue><spage>8084</spage><epage>8092</epage><pages>8084-8092</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32633492</pmid><doi>10.1021/acsnano.0c00720</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5552-8836</orcidid><orcidid>https://orcid.org/0000-0003-4511-6413</orcidid><orcidid>https://orcid.org/0000-0002-3862-8472</orcidid><orcidid>https://orcid.org/0000-0002-9942-2419</orcidid><orcidid>https://orcid.org/0000-0001-9566-0738</orcidid><orcidid>https://orcid.org/0000-0001-6600-7801</orcidid><orcidid>https://orcid.org/0000-0002-6761-6171</orcidid><orcidid>https://orcid.org/0000000166007801</orcidid><orcidid>https://orcid.org/0000000255528836</orcidid><orcidid>https://orcid.org/0000000345116413</orcidid><orcidid>https://orcid.org/0000000195660738</orcidid><orcidid>https://orcid.org/0000000238628472</orcidid><orcidid>https://orcid.org/0000000299422419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-07, Vol.14 (7), p.8084-8092
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497658
source American Chemical Society Journals
subjects chirality
Condensed Matter
double-helix
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mesoscopic Systems and Quantum Hall Effect
nanomagnetic
nanoprinting
Physics
topological
X-ray
title Artificial Double-Helix for Geometrical Control of Magnetic Chirality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Double-Helix%20for%20Geometrical%20Control%20of%20Magnetic%20Chirality&rft.jtitle=ACS%20nano&rft.au=Sanz-Herna%CC%81ndez,%20De%CC%81dalo&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-07-28&rft.volume=14&rft.issue=7&rft.spage=8084&rft.epage=8092&rft.pages=8084-8092&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c00720&rft_dat=%3Cproquest_pubme%3E2421112134%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421112134&rft_id=info:pmid/32633492&rfr_iscdi=true