Creation of fertility-restored materials for Ogura CMS in Brassica oleracea by introducing Rfo gene from Brassica napus via an allotriploid strategy

Key message Ogura CMS fertility-restored materials, with 18 chromosomes, normal seed setting, stable fertility and closer genetic background to the parent Chinese kale, were successfully developed in B. oleracea via a triploid strategy for the first time. Ogura cytoplasmic male sterility (CMS) is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2020-10, Vol.133 (10), p.2825-2837
Hauptverfasser: Yu, Hai-long, Li, Zhi-yuan, Ren, Wen-jing, Han, Feng-qing, Yang, Li-mei, Zhuang, Mu, Lv, Hong-hao, Liu, Yu-mei, Fang, Zhi-yuan, Zhang, Yang-yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2837
container_issue 10
container_start_page 2825
container_title Theoretical and applied genetics
container_volume 133
creator Yu, Hai-long
Li, Zhi-yuan
Ren, Wen-jing
Han, Feng-qing
Yang, Li-mei
Zhuang, Mu
Lv, Hong-hao
Liu, Yu-mei
Fang, Zhi-yuan
Zhang, Yang-yong
description Key message Ogura CMS fertility-restored materials, with 18 chromosomes, normal seed setting, stable fertility and closer genetic background to the parent Chinese kale, were successfully developed in B. oleracea via a triploid strategy for the first time. Ogura cytoplasmic male sterility (CMS) is the most widely used sterile type in seed production for commercial hybrids of Brassica oleracea vegetables. However, the natural Ogura CMS restorer line has not been found in B. oleracea crops. In this study, the triploid strategy was used with the aim to create euploid B. oleracea progenies with the Rfo gene. The allotriploid AAC hybrid YL2 was used as a male parent to backcross with Ogura CMS Chinese kale. After successive backcrosses, the BC 2 Rfo -positive individual 16CMSF2-11 and its BC 3 progenies, with 18 chromosomes, were developed, which were morphologically identical to the parent Chinese kale. Compared with F 1 and BC 1 plants, it showed stable fertility performance, and regular meiosis behavior and could produce seeds normally under natural pollination. The genomic composition analysis of Rfo -positive progenies by using molecular markers showed that more than 87% of the C-genome components of BC 3 Rfo -progenies recovered to the parent Chinese kale, while most or all of the A n -genome segments were lost in 16CMSF2-11 and its progenies. The results suggested that the genetic background of Rfo -positive individuals was closer to that of the parent Chinese kale along with backcrossing. Hereof, the Ogura CMS fertility-restored materials of Chinese kale were successfully created via triploid strategy for the first time, providing a bridge for utilizing the Ogura CMS B. oleracea germplasm in the future. Moreover, our study indicates that the triploid strategy is effective for transferring genes from B. napus into B. oleracea .
doi_str_mv 10.1007/s00122-020-03635-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A635334689</galeid><sourcerecordid>A635334689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-88338b6029410cf01e98882510a567fdd39198a21615ee211badeff0c7d207c63</originalsourceid><addsrcrecordid>eNp9kt1qFDEUxwdR7Fp9AS8k4JUX054k85G5EdpFbaFSaPU6ZDMnY8pMsiaZ4r6HD2zabbsuiIQQOOd3PvMvircUjihAexwBKGMlMCiBN7wuxbNiQSvOSsYq9rxYAFRQ1m3NDopXMd4AAKuBvywOOGtovtWi-L0MqJL1jnhDDIZkR5s2ZcCYfMCeTCphsGqMxPhALoc5KLL8ek2sI6dBxWi1In7EoDQqstpkewq-n7V1A7kyngzokJjgpx3u1HqO5NYqohxR4-hTsOvR257EFHK5YfO6eGFySXzz8B4W3z9_-rY8Ky8uv5wvTy5KnYdKpRCci1UDrKsoaAMUOyEEqymoumlN3_OOdkIx2tAakVG6Uj0aA7rtGbS64YfFx23e9byasNeYm1ejXAc7qbCRXlm573H2hxz8rWyrruU1ywnePyQI_uecdyZv_Bxc7lmyqqIdpaLrdtSgRpTWmTyx0pONWp7kb-O8asQddfQPKp8eJ6u9Q2OzfS_gw15AZhL-SoOaY5Tn11f7LNuyOvgYA5qnISnIOzHJrZhkFpO8F5MUOejd3-t5CnlUTwb4FojZ5QYMu_H_k_YPozrVCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441911899</pqid></control><display><type>article</type><title>Creation of fertility-restored materials for Ogura CMS in Brassica oleracea by introducing Rfo gene from Brassica napus via an allotriploid strategy</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Hai-long ; Li, Zhi-yuan ; Ren, Wen-jing ; Han, Feng-qing ; Yang, Li-mei ; Zhuang, Mu ; Lv, Hong-hao ; Liu, Yu-mei ; Fang, Zhi-yuan ; Zhang, Yang-yong</creator><creatorcontrib>Yu, Hai-long ; Li, Zhi-yuan ; Ren, Wen-jing ; Han, Feng-qing ; Yang, Li-mei ; Zhuang, Mu ; Lv, Hong-hao ; Liu, Yu-mei ; Fang, Zhi-yuan ; Zhang, Yang-yong</creatorcontrib><description>Key message Ogura CMS fertility-restored materials, with 18 chromosomes, normal seed setting, stable fertility and closer genetic background to the parent Chinese kale, were successfully developed in B. oleracea via a triploid strategy for the first time. Ogura cytoplasmic male sterility (CMS) is the most widely used sterile type in seed production for commercial hybrids of Brassica oleracea vegetables. However, the natural Ogura CMS restorer line has not been found in B. oleracea crops. In this study, the triploid strategy was used with the aim to create euploid B. oleracea progenies with the Rfo gene. The allotriploid AAC hybrid YL2 was used as a male parent to backcross with Ogura CMS Chinese kale. After successive backcrosses, the BC 2 Rfo -positive individual 16CMSF2-11 and its BC 3 progenies, with 18 chromosomes, were developed, which were morphologically identical to the parent Chinese kale. Compared with F 1 and BC 1 plants, it showed stable fertility performance, and regular meiosis behavior and could produce seeds normally under natural pollination. The genomic composition analysis of Rfo -positive progenies by using molecular markers showed that more than 87% of the C-genome components of BC 3 Rfo -progenies recovered to the parent Chinese kale, while most or all of the A n -genome segments were lost in 16CMSF2-11 and its progenies. The results suggested that the genetic background of Rfo -positive individuals was closer to that of the parent Chinese kale along with backcrossing. Hereof, the Ogura CMS fertility-restored materials of Chinese kale were successfully created via triploid strategy for the first time, providing a bridge for utilizing the Ogura CMS B. oleracea germplasm in the future. Moreover, our study indicates that the triploid strategy is effective for transferring genes from B. napus into B. oleracea .</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-020-03635-8</identifier><identifier>PMID: 32613264</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Analysis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Brassica - physiology ; Brassica alboglabra ; Brassica napus - genetics ; Brassica oleracea ; Chromosomes ; Crosses, Genetic ; Cytoplasmic male sterility ; Fertility ; Fertility - genetics ; Genetic Markers ; Genetic research ; Genomes ; Genomics ; Germplasm ; Hybrids ; INDEL Mutation ; Kale ; Life Sciences ; Male sterility ; Meiosis ; Original ; Original Article ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Infertility - genetics ; Pollination ; Seed industry ; Seeds ; Triploidy ; Vegetables</subject><ispartof>Theoretical and applied genetics, 2020-10, Vol.133 (10), p.2825-2837</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-88338b6029410cf01e98882510a567fdd39198a21615ee211badeff0c7d207c63</citedby><cites>FETCH-LOGICAL-c575t-88338b6029410cf01e98882510a567fdd39198a21615ee211badeff0c7d207c63</cites><orcidid>0000-0003-1337-4899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-020-03635-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-020-03635-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32613264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Hai-long</creatorcontrib><creatorcontrib>Li, Zhi-yuan</creatorcontrib><creatorcontrib>Ren, Wen-jing</creatorcontrib><creatorcontrib>Han, Feng-qing</creatorcontrib><creatorcontrib>Yang, Li-mei</creatorcontrib><creatorcontrib>Zhuang, Mu</creatorcontrib><creatorcontrib>Lv, Hong-hao</creatorcontrib><creatorcontrib>Liu, Yu-mei</creatorcontrib><creatorcontrib>Fang, Zhi-yuan</creatorcontrib><creatorcontrib>Zhang, Yang-yong</creatorcontrib><title>Creation of fertility-restored materials for Ogura CMS in Brassica oleracea by introducing Rfo gene from Brassica napus via an allotriploid strategy</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message Ogura CMS fertility-restored materials, with 18 chromosomes, normal seed setting, stable fertility and closer genetic background to the parent Chinese kale, were successfully developed in B. oleracea via a triploid strategy for the first time. Ogura cytoplasmic male sterility (CMS) is the most widely used sterile type in seed production for commercial hybrids of Brassica oleracea vegetables. However, the natural Ogura CMS restorer line has not been found in B. oleracea crops. In this study, the triploid strategy was used with the aim to create euploid B. oleracea progenies with the Rfo gene. The allotriploid AAC hybrid YL2 was used as a male parent to backcross with Ogura CMS Chinese kale. After successive backcrosses, the BC 2 Rfo -positive individual 16CMSF2-11 and its BC 3 progenies, with 18 chromosomes, were developed, which were morphologically identical to the parent Chinese kale. Compared with F 1 and BC 1 plants, it showed stable fertility performance, and regular meiosis behavior and could produce seeds normally under natural pollination. The genomic composition analysis of Rfo -positive progenies by using molecular markers showed that more than 87% of the C-genome components of BC 3 Rfo -progenies recovered to the parent Chinese kale, while most or all of the A n -genome segments were lost in 16CMSF2-11 and its progenies. The results suggested that the genetic background of Rfo -positive individuals was closer to that of the parent Chinese kale along with backcrossing. Hereof, the Ogura CMS fertility-restored materials of Chinese kale were successfully created via triploid strategy for the first time, providing a bridge for utilizing the Ogura CMS B. oleracea germplasm in the future. Moreover, our study indicates that the triploid strategy is effective for transferring genes from B. napus into B. oleracea .</description><subject>Agriculture</subject><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brassica - physiology</subject><subject>Brassica alboglabra</subject><subject>Brassica napus - genetics</subject><subject>Brassica oleracea</subject><subject>Chromosomes</subject><subject>Crosses, Genetic</subject><subject>Cytoplasmic male sterility</subject><subject>Fertility</subject><subject>Fertility - genetics</subject><subject>Genetic Markers</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germplasm</subject><subject>Hybrids</subject><subject>INDEL Mutation</subject><subject>Kale</subject><subject>Life Sciences</subject><subject>Male sterility</subject><subject>Meiosis</subject><subject>Original</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Infertility - genetics</subject><subject>Pollination</subject><subject>Seed industry</subject><subject>Seeds</subject><subject>Triploidy</subject><subject>Vegetables</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kt1qFDEUxwdR7Fp9AS8k4JUX054k85G5EdpFbaFSaPU6ZDMnY8pMsiaZ4r6HD2zabbsuiIQQOOd3PvMvircUjihAexwBKGMlMCiBN7wuxbNiQSvOSsYq9rxYAFRQ1m3NDopXMd4AAKuBvywOOGtovtWi-L0MqJL1jnhDDIZkR5s2ZcCYfMCeTCphsGqMxPhALoc5KLL8ek2sI6dBxWi1In7EoDQqstpkewq-n7V1A7kyngzokJjgpx3u1HqO5NYqohxR4-hTsOvR257EFHK5YfO6eGFySXzz8B4W3z9_-rY8Ky8uv5wvTy5KnYdKpRCci1UDrKsoaAMUOyEEqymoumlN3_OOdkIx2tAakVG6Uj0aA7rtGbS64YfFx23e9byasNeYm1ejXAc7qbCRXlm573H2hxz8rWyrruU1ywnePyQI_uecdyZv_Bxc7lmyqqIdpaLrdtSgRpTWmTyx0pONWp7kb-O8asQddfQPKp8eJ6u9Q2OzfS_gw15AZhL-SoOaY5Tn11f7LNuyOvgYA5qnISnIOzHJrZhkFpO8F5MUOejd3-t5CnlUTwb4FojZ5QYMu_H_k_YPozrVCg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Yu, Hai-long</creator><creator>Li, Zhi-yuan</creator><creator>Ren, Wen-jing</creator><creator>Han, Feng-qing</creator><creator>Yang, Li-mei</creator><creator>Zhuang, Mu</creator><creator>Lv, Hong-hao</creator><creator>Liu, Yu-mei</creator><creator>Fang, Zhi-yuan</creator><creator>Zhang, Yang-yong</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1337-4899</orcidid></search><sort><creationdate>20201001</creationdate><title>Creation of fertility-restored materials for Ogura CMS in Brassica oleracea by introducing Rfo gene from Brassica napus via an allotriploid strategy</title><author>Yu, Hai-long ; Li, Zhi-yuan ; Ren, Wen-jing ; Han, Feng-qing ; Yang, Li-mei ; Zhuang, Mu ; Lv, Hong-hao ; Liu, Yu-mei ; Fang, Zhi-yuan ; Zhang, Yang-yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-88338b6029410cf01e98882510a567fdd39198a21615ee211badeff0c7d207c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brassica - physiology</topic><topic>Brassica alboglabra</topic><topic>Brassica napus - genetics</topic><topic>Brassica oleracea</topic><topic>Chromosomes</topic><topic>Crosses, Genetic</topic><topic>Cytoplasmic male sterility</topic><topic>Fertility</topic><topic>Fertility - genetics</topic><topic>Genetic Markers</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germplasm</topic><topic>Hybrids</topic><topic>INDEL Mutation</topic><topic>Kale</topic><topic>Life Sciences</topic><topic>Male sterility</topic><topic>Meiosis</topic><topic>Original</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Infertility - genetics</topic><topic>Pollination</topic><topic>Seed industry</topic><topic>Seeds</topic><topic>Triploidy</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hai-long</creatorcontrib><creatorcontrib>Li, Zhi-yuan</creatorcontrib><creatorcontrib>Ren, Wen-jing</creatorcontrib><creatorcontrib>Han, Feng-qing</creatorcontrib><creatorcontrib>Yang, Li-mei</creatorcontrib><creatorcontrib>Zhuang, Mu</creatorcontrib><creatorcontrib>Lv, Hong-hao</creatorcontrib><creatorcontrib>Liu, Yu-mei</creatorcontrib><creatorcontrib>Fang, Zhi-yuan</creatorcontrib><creatorcontrib>Zhang, Yang-yong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hai-long</au><au>Li, Zhi-yuan</au><au>Ren, Wen-jing</au><au>Han, Feng-qing</au><au>Yang, Li-mei</au><au>Zhuang, Mu</au><au>Lv, Hong-hao</au><au>Liu, Yu-mei</au><au>Fang, Zhi-yuan</au><au>Zhang, Yang-yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation of fertility-restored materials for Ogura CMS in Brassica oleracea by introducing Rfo gene from Brassica napus via an allotriploid strategy</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>133</volume><issue>10</issue><spage>2825</spage><epage>2837</epage><pages>2825-2837</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message Ogura CMS fertility-restored materials, with 18 chromosomes, normal seed setting, stable fertility and closer genetic background to the parent Chinese kale, were successfully developed in B. oleracea via a triploid strategy for the first time. Ogura cytoplasmic male sterility (CMS) is the most widely used sterile type in seed production for commercial hybrids of Brassica oleracea vegetables. However, the natural Ogura CMS restorer line has not been found in B. oleracea crops. In this study, the triploid strategy was used with the aim to create euploid B. oleracea progenies with the Rfo gene. The allotriploid AAC hybrid YL2 was used as a male parent to backcross with Ogura CMS Chinese kale. After successive backcrosses, the BC 2 Rfo -positive individual 16CMSF2-11 and its BC 3 progenies, with 18 chromosomes, were developed, which were morphologically identical to the parent Chinese kale. Compared with F 1 and BC 1 plants, it showed stable fertility performance, and regular meiosis behavior and could produce seeds normally under natural pollination. The genomic composition analysis of Rfo -positive progenies by using molecular markers showed that more than 87% of the C-genome components of BC 3 Rfo -progenies recovered to the parent Chinese kale, while most or all of the A n -genome segments were lost in 16CMSF2-11 and its progenies. The results suggested that the genetic background of Rfo -positive individuals was closer to that of the parent Chinese kale along with backcrossing. Hereof, the Ogura CMS fertility-restored materials of Chinese kale were successfully created via triploid strategy for the first time, providing a bridge for utilizing the Ogura CMS B. oleracea germplasm in the future. Moreover, our study indicates that the triploid strategy is effective for transferring genes from B. napus into B. oleracea .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32613264</pmid><doi>10.1007/s00122-020-03635-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1337-4899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2020-10, Vol.133 (10), p.2825-2837
issn 0040-5752
1432-2242
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497352
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Analysis
Biochemistry
Biomedical and Life Sciences
Biotechnology
Brassica - physiology
Brassica alboglabra
Brassica napus - genetics
Brassica oleracea
Chromosomes
Crosses, Genetic
Cytoplasmic male sterility
Fertility
Fertility - genetics
Genetic Markers
Genetic research
Genomes
Genomics
Germplasm
Hybrids
INDEL Mutation
Kale
Life Sciences
Male sterility
Meiosis
Original
Original Article
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Infertility - genetics
Pollination
Seed industry
Seeds
Triploidy
Vegetables
title Creation of fertility-restored materials for Ogura CMS in Brassica oleracea by introducing Rfo gene from Brassica napus via an allotriploid strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20of%20fertility-restored%20materials%20for%20Ogura%20CMS%20in%20Brassica%20oleracea%20by%20introducing%20Rfo%20gene%20from%20Brassica%20napus%20via%20an%20allotriploid%20strategy&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Yu,%20Hai-long&rft.date=2020-10-01&rft.volume=133&rft.issue=10&rft.spage=2825&rft.epage=2837&rft.pages=2825-2837&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-020-03635-8&rft_dat=%3Cgale_pubme%3EA635334689%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441911899&rft_id=info:pmid/32613264&rft_galeid=A635334689&rfr_iscdi=true