Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes
Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2020-07, Vol.13 (14), p.3627-3635 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3635 |
---|---|
container_issue | 14 |
container_start_page | 3627 |
container_title | ChemSusChem |
container_volume | 13 |
creator | Ruff, Adrian Szczesny, Julian Vega, Maria Zacarias, Sonia Matias, Pedro M. Gounel, Sébastien Mano, Nicolas Pereira, Inês A. C. Schuhmann, Wolfgang |
description | Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with respect to H2‐oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm−2 for G491A and (476±172) μA cm−2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high‐potential inactivation, establishing a triple protection for the bioanode. The use of gas‐diffusion bioanodes provided current densities for H2‐oxidation of up to 6.3 mA cm−2. Combination of the gas‐diffusion bioanode with a bilirubin oxidase‐based gas‐diffusion O2‐reducing biocathode in a membrane‐free biofuel cell under anode‐limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm−2 at 0.7 V and an open‐circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F.
Triple protection: A stable, high‐current‐density‐based H2‐oxidation bioanode is presented. It is equipped with [NiFeSe] variants that show enhanced O2 tolerance, which are immobilized and wired to electrode surfaces with a low‐potential viologen‐modified polymer. The polymer acts simultaneously as a high‐potential and O2 shield. The triply protected bioanodes are incorporated in membrane‐free biofuel cells, which reveal benchmark performances at moderate catalyst loading. |
doi_str_mv | 10.1002/cssc.202000999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425775466</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2809-b34200744d5157ae71fc05a03d90bc990d5fdafdf1d0b857cb5a06a3c22a0b643</originalsourceid><addsrcrecordid>eNpVkc9uEzEQxi0EoqVw5WyJc8qs7fXGFyTYtgSpIoiUPxJCltf2Jq42drAd2r3xCFx5PZ4Er1pF4jTfzPz0aUYfQs8rOK0AyEudkj4lQABACPEAHVdzzmY1Z18fHjStjtCTlK4BOAjOH6MjSigVdM6P0Z-P1oTbv79-fwjDuLWxqC8uWoO_vXcXdmW_48VoYlhbr5LFn1V0yueEb1ze4HO_UV4XdknwKqvODS6PuA8RX0W3G-zkGkO2Ohdm4dabMmj3MVqfizqzPk38gpRmeeuMyi54_MYF5YOx6Sl61Ksh2Wf39QR9uji_ahezy-Xbd-3ry9mazEHMOsrK8w1jpq7qRtmm6jXUCqgR0GkhwNS9Ub3pKwPdvG50V5ZcUU2Igo4zeoJe3fnu9t3WGl2ui2qQu-i2Ko4yKCf_33i3kevwUzZMNCAmgxf3BjH82NuU5XXYR19uloSRumlqxnmhxB114wY7HuwrkFOOcspRHnKU7WrVHjr6D7CfnB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425775466</pqid></control><display><type>article</type><title>Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes</title><source>Access via Wiley Online Library</source><creator>Ruff, Adrian ; Szczesny, Julian ; Vega, Maria ; Zacarias, Sonia ; Matias, Pedro M. ; Gounel, Sébastien ; Mano, Nicolas ; Pereira, Inês A. C. ; Schuhmann, Wolfgang</creator><creatorcontrib>Ruff, Adrian ; Szczesny, Julian ; Vega, Maria ; Zacarias, Sonia ; Matias, Pedro M. ; Gounel, Sébastien ; Mano, Nicolas ; Pereira, Inês A. C. ; Schuhmann, Wolfgang</creatorcontrib><description>Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with respect to H2‐oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm−2 for G491A and (476±172) μA cm−2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high‐potential inactivation, establishing a triple protection for the bioanode. The use of gas‐diffusion bioanodes provided current densities for H2‐oxidation of up to 6.3 mA cm−2. Combination of the gas‐diffusion bioanode with a bilirubin oxidase‐based gas‐diffusion O2‐reducing biocathode in a membrane‐free biofuel cell under anode‐limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm−2 at 0.7 V and an open‐circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F.
Triple protection: A stable, high‐current‐density‐based H2‐oxidation bioanode is presented. It is equipped with [NiFeSe] variants that show enhanced O2 tolerance, which are immobilized and wired to electrode surfaces with a low‐potential viologen‐modified polymer. The polymer acts simultaneously as a high‐potential and O2 shield. The triply protected bioanodes are incorporated in membrane‐free biofuel cells, which reveal benchmark performances at moderate catalyst loading.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202000999</identifier><identifier>PMID: 32339386</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Biochemical fuel cells ; Biodiesel fuels ; bioelectrocatalysis ; biofuel cells ; Biofuels ; Catalysts ; Circuits ; Current density ; Deactivation ; Diffusion ; enzyme engineering ; Glassy carbon ; Hydrogenase ; hydrogenases ; Iron compounds ; Nickel compounds ; Oxidation ; Polymers ; redox polymers ; Stability analysis</subject><ispartof>ChemSusChem, 2020-07, Vol.13 (14), p.3627-3635</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3283-4520 ; 0000-0003-2916-5223 ; 0000-0002-7602-9657 ; 0000-0001-7084-9323 ; 0000-0001-5659-8556 ; 0000-0001-6170-451X ; 0000-0002-8842-8057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202000999$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202000999$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ruff, Adrian</creatorcontrib><creatorcontrib>Szczesny, Julian</creatorcontrib><creatorcontrib>Vega, Maria</creatorcontrib><creatorcontrib>Zacarias, Sonia</creatorcontrib><creatorcontrib>Matias, Pedro M.</creatorcontrib><creatorcontrib>Gounel, Sébastien</creatorcontrib><creatorcontrib>Mano, Nicolas</creatorcontrib><creatorcontrib>Pereira, Inês A. C.</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><title>Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes</title><title>ChemSusChem</title><description>Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with respect to H2‐oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm−2 for G491A and (476±172) μA cm−2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high‐potential inactivation, establishing a triple protection for the bioanode. The use of gas‐diffusion bioanodes provided current densities for H2‐oxidation of up to 6.3 mA cm−2. Combination of the gas‐diffusion bioanode with a bilirubin oxidase‐based gas‐diffusion O2‐reducing biocathode in a membrane‐free biofuel cell under anode‐limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm−2 at 0.7 V and an open‐circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F.
Triple protection: A stable, high‐current‐density‐based H2‐oxidation bioanode is presented. It is equipped with [NiFeSe] variants that show enhanced O2 tolerance, which are immobilized and wired to electrode surfaces with a low‐potential viologen‐modified polymer. The polymer acts simultaneously as a high‐potential and O2 shield. The triply protected bioanodes are incorporated in membrane‐free biofuel cells, which reveal benchmark performances at moderate catalyst loading.</description><subject>Addition polymerization</subject><subject>Biochemical fuel cells</subject><subject>Biodiesel fuels</subject><subject>bioelectrocatalysis</subject><subject>biofuel cells</subject><subject>Biofuels</subject><subject>Catalysts</subject><subject>Circuits</subject><subject>Current density</subject><subject>Deactivation</subject><subject>Diffusion</subject><subject>enzyme engineering</subject><subject>Glassy carbon</subject><subject>Hydrogenase</subject><subject>hydrogenases</subject><subject>Iron compounds</subject><subject>Nickel compounds</subject><subject>Oxidation</subject><subject>Polymers</subject><subject>redox polymers</subject><subject>Stability analysis</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpVkc9uEzEQxi0EoqVw5WyJc8qs7fXGFyTYtgSpIoiUPxJCltf2Jq42drAd2r3xCFx5PZ4Er1pF4jTfzPz0aUYfQs8rOK0AyEudkj4lQABACPEAHVdzzmY1Z18fHjStjtCTlK4BOAjOH6MjSigVdM6P0Z-P1oTbv79-fwjDuLWxqC8uWoO_vXcXdmW_48VoYlhbr5LFn1V0yueEb1ze4HO_UV4XdknwKqvODS6PuA8RX0W3G-zkGkO2Ohdm4dabMmj3MVqfizqzPk38gpRmeeuMyi54_MYF5YOx6Sl61Ksh2Wf39QR9uji_ahezy-Xbd-3ry9mazEHMOsrK8w1jpq7qRtmm6jXUCqgR0GkhwNS9Ub3pKwPdvG50V5ZcUU2Igo4zeoJe3fnu9t3WGl2ui2qQu-i2Ko4yKCf_33i3kevwUzZMNCAmgxf3BjH82NuU5XXYR19uloSRumlqxnmhxB114wY7HuwrkFOOcspRHnKU7WrVHjr6D7CfnB0</recordid><startdate>20200722</startdate><enddate>20200722</enddate><creator>Ruff, Adrian</creator><creator>Szczesny, Julian</creator><creator>Vega, Maria</creator><creator>Zacarias, Sonia</creator><creator>Matias, Pedro M.</creator><creator>Gounel, Sébastien</creator><creator>Mano, Nicolas</creator><creator>Pereira, Inês A. C.</creator><creator>Schuhmann, Wolfgang</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0003-2916-5223</orcidid><orcidid>https://orcid.org/0000-0002-7602-9657</orcidid><orcidid>https://orcid.org/0000-0001-7084-9323</orcidid><orcidid>https://orcid.org/0000-0001-5659-8556</orcidid><orcidid>https://orcid.org/0000-0001-6170-451X</orcidid><orcidid>https://orcid.org/0000-0002-8842-8057</orcidid></search><sort><creationdate>20200722</creationdate><title>Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes</title><author>Ruff, Adrian ; Szczesny, Julian ; Vega, Maria ; Zacarias, Sonia ; Matias, Pedro M. ; Gounel, Sébastien ; Mano, Nicolas ; Pereira, Inês A. C. ; Schuhmann, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2809-b34200744d5157ae71fc05a03d90bc990d5fdafdf1d0b857cb5a06a3c22a0b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addition polymerization</topic><topic>Biochemical fuel cells</topic><topic>Biodiesel fuels</topic><topic>bioelectrocatalysis</topic><topic>biofuel cells</topic><topic>Biofuels</topic><topic>Catalysts</topic><topic>Circuits</topic><topic>Current density</topic><topic>Deactivation</topic><topic>Diffusion</topic><topic>enzyme engineering</topic><topic>Glassy carbon</topic><topic>Hydrogenase</topic><topic>hydrogenases</topic><topic>Iron compounds</topic><topic>Nickel compounds</topic><topic>Oxidation</topic><topic>Polymers</topic><topic>redox polymers</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruff, Adrian</creatorcontrib><creatorcontrib>Szczesny, Julian</creatorcontrib><creatorcontrib>Vega, Maria</creatorcontrib><creatorcontrib>Zacarias, Sonia</creatorcontrib><creatorcontrib>Matias, Pedro M.</creatorcontrib><creatorcontrib>Gounel, Sébastien</creatorcontrib><creatorcontrib>Mano, Nicolas</creatorcontrib><creatorcontrib>Pereira, Inês A. C.</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruff, Adrian</au><au>Szczesny, Julian</au><au>Vega, Maria</au><au>Zacarias, Sonia</au><au>Matias, Pedro M.</au><au>Gounel, Sébastien</au><au>Mano, Nicolas</au><au>Pereira, Inês A. C.</au><au>Schuhmann, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes</atitle><jtitle>ChemSusChem</jtitle><date>2020-07-22</date><risdate>2020</risdate><volume>13</volume><issue>14</issue><spage>3627</spage><epage>3635</epage><pages>3627-3635</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with respect to H2‐oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm−2 for G491A and (476±172) μA cm−2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high‐potential inactivation, establishing a triple protection for the bioanode. The use of gas‐diffusion bioanodes provided current densities for H2‐oxidation of up to 6.3 mA cm−2. Combination of the gas‐diffusion bioanode with a bilirubin oxidase‐based gas‐diffusion O2‐reducing biocathode in a membrane‐free biofuel cell under anode‐limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm−2 at 0.7 V and an open‐circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F.
Triple protection: A stable, high‐current‐density‐based H2‐oxidation bioanode is presented. It is equipped with [NiFeSe] variants that show enhanced O2 tolerance, which are immobilized and wired to electrode surfaces with a low‐potential viologen‐modified polymer. The polymer acts simultaneously as a high‐potential and O2 shield. The triply protected bioanodes are incorporated in membrane‐free biofuel cells, which reveal benchmark performances at moderate catalyst loading.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32339386</pmid><doi>10.1002/cssc.202000999</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0003-2916-5223</orcidid><orcidid>https://orcid.org/0000-0002-7602-9657</orcidid><orcidid>https://orcid.org/0000-0001-7084-9323</orcidid><orcidid>https://orcid.org/0000-0001-5659-8556</orcidid><orcidid>https://orcid.org/0000-0001-6170-451X</orcidid><orcidid>https://orcid.org/0000-0002-8842-8057</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2020-07, Vol.13 (14), p.3627-3635 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497094 |
source | Access via Wiley Online Library |
subjects | Addition polymerization Biochemical fuel cells Biodiesel fuels bioelectrocatalysis biofuel cells Biofuels Catalysts Circuits Current density Deactivation Diffusion enzyme engineering Glassy carbon Hydrogenase hydrogenases Iron compounds Nickel compounds Oxidation Polymers redox polymers Stability analysis |
title | Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%E2%80%90Polymer%E2%80%90Wired%20%5BNiFeSe%5D%20Hydrogenase%20Variants%20with%20Enhanced%20O2%20Stability%20for%20Triple%E2%80%90Protected%20High%E2%80%90Current%E2%80%90Density%20H2%E2%80%90Oxidation%20Bioanodes&rft.jtitle=ChemSusChem&rft.au=Ruff,%20Adrian&rft.date=2020-07-22&rft.volume=13&rft.issue=14&rft.spage=3627&rft.epage=3635&rft.pages=3627-3635&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202000999&rft_dat=%3Cproquest_pubme%3E2425775466%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425775466&rft_id=info:pmid/32339386&rfr_iscdi=true |