Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes

Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2020-07, Vol.13 (14), p.3627-3635
Hauptverfasser: Ruff, Adrian, Szczesny, Julian, Vega, Maria, Zacarias, Sonia, Matias, Pedro M., Gounel, Sébastien, Mano, Nicolas, Pereira, Inês A. C., Schuhmann, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3635
container_issue 14
container_start_page 3627
container_title ChemSusChem
container_volume 13
creator Ruff, Adrian
Szczesny, Julian
Vega, Maria
Zacarias, Sonia
Matias, Pedro M.
Gounel, Sébastien
Mano, Nicolas
Pereira, Inês A. C.
Schuhmann, Wolfgang
description Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with respect to H2‐oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm−2 for G491A and (476±172) μA cm−2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high‐potential inactivation, establishing a triple protection for the bioanode. The use of gas‐diffusion bioanodes provided current densities for H2‐oxidation of up to 6.3 mA cm−2. Combination of the gas‐diffusion bioanode with a bilirubin oxidase‐based gas‐diffusion O2‐reducing biocathode in a membrane‐free biofuel cell under anode‐limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm−2 at 0.7 V and an open‐circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F. Triple protection: A stable, high‐current‐density‐based H2‐oxidation bioanode is presented. It is equipped with [NiFeSe] variants that show enhanced O2 tolerance, which are immobilized and wired to electrode surfaces with a low‐potential viologen‐modified polymer. The polymer acts simultaneously as a high‐potential and O2 shield. The triply protected bioanodes are incorporated in membrane‐free biofuel cells, which reveal benchmark performances at moderate catalyst loading.
doi_str_mv 10.1002/cssc.202000999
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425775466</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2809-b34200744d5157ae71fc05a03d90bc990d5fdafdf1d0b857cb5a06a3c22a0b643</originalsourceid><addsrcrecordid>eNpVkc9uEzEQxi0EoqVw5WyJc8qs7fXGFyTYtgSpIoiUPxJCltf2Jq42drAd2r3xCFx5PZ4Er1pF4jTfzPz0aUYfQs8rOK0AyEudkj4lQABACPEAHVdzzmY1Z18fHjStjtCTlK4BOAjOH6MjSigVdM6P0Z-P1oTbv79-fwjDuLWxqC8uWoO_vXcXdmW_48VoYlhbr5LFn1V0yueEb1ze4HO_UV4XdknwKqvODS6PuA8RX0W3G-zkGkO2Ohdm4dabMmj3MVqfizqzPk38gpRmeeuMyi54_MYF5YOx6Sl61Ksh2Wf39QR9uji_ahezy-Xbd-3ry9mazEHMOsrK8w1jpq7qRtmm6jXUCqgR0GkhwNS9Ub3pKwPdvG50V5ZcUU2Igo4zeoJe3fnu9t3WGl2ui2qQu-i2Ko4yKCf_33i3kevwUzZMNCAmgxf3BjH82NuU5XXYR19uloSRumlqxnmhxB114wY7HuwrkFOOcspRHnKU7WrVHjr6D7CfnB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425775466</pqid></control><display><type>article</type><title>Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes</title><source>Access via Wiley Online Library</source><creator>Ruff, Adrian ; Szczesny, Julian ; Vega, Maria ; Zacarias, Sonia ; Matias, Pedro M. ; Gounel, Sébastien ; Mano, Nicolas ; Pereira, Inês A. C. ; Schuhmann, Wolfgang</creator><creatorcontrib>Ruff, Adrian ; Szczesny, Julian ; Vega, Maria ; Zacarias, Sonia ; Matias, Pedro M. ; Gounel, Sébastien ; Mano, Nicolas ; Pereira, Inês A. C. ; Schuhmann, Wolfgang</creatorcontrib><description>Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with respect to H2‐oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm−2 for G491A and (476±172) μA cm−2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high‐potential inactivation, establishing a triple protection for the bioanode. The use of gas‐diffusion bioanodes provided current densities for H2‐oxidation of up to 6.3 mA cm−2. Combination of the gas‐diffusion bioanode with a bilirubin oxidase‐based gas‐diffusion O2‐reducing biocathode in a membrane‐free biofuel cell under anode‐limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm−2 at 0.7 V and an open‐circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F. Triple protection: A stable, high‐current‐density‐based H2‐oxidation bioanode is presented. It is equipped with [NiFeSe] variants that show enhanced O2 tolerance, which are immobilized and wired to electrode surfaces with a low‐potential viologen‐modified polymer. The polymer acts simultaneously as a high‐potential and O2 shield. The triply protected bioanodes are incorporated in membrane‐free biofuel cells, which reveal benchmark performances at moderate catalyst loading.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202000999</identifier><identifier>PMID: 32339386</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Biochemical fuel cells ; Biodiesel fuels ; bioelectrocatalysis ; biofuel cells ; Biofuels ; Catalysts ; Circuits ; Current density ; Deactivation ; Diffusion ; enzyme engineering ; Glassy carbon ; Hydrogenase ; hydrogenases ; Iron compounds ; Nickel compounds ; Oxidation ; Polymers ; redox polymers ; Stability analysis</subject><ispartof>ChemSusChem, 2020-07, Vol.13 (14), p.3627-3635</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3283-4520 ; 0000-0003-2916-5223 ; 0000-0002-7602-9657 ; 0000-0001-7084-9323 ; 0000-0001-5659-8556 ; 0000-0001-6170-451X ; 0000-0002-8842-8057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202000999$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202000999$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ruff, Adrian</creatorcontrib><creatorcontrib>Szczesny, Julian</creatorcontrib><creatorcontrib>Vega, Maria</creatorcontrib><creatorcontrib>Zacarias, Sonia</creatorcontrib><creatorcontrib>Matias, Pedro M.</creatorcontrib><creatorcontrib>Gounel, Sébastien</creatorcontrib><creatorcontrib>Mano, Nicolas</creatorcontrib><creatorcontrib>Pereira, Inês A. C.</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><title>Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes</title><title>ChemSusChem</title><description>Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with respect to H2‐oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm−2 for G491A and (476±172) μA cm−2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high‐potential inactivation, establishing a triple protection for the bioanode. The use of gas‐diffusion bioanodes provided current densities for H2‐oxidation of up to 6.3 mA cm−2. Combination of the gas‐diffusion bioanode with a bilirubin oxidase‐based gas‐diffusion O2‐reducing biocathode in a membrane‐free biofuel cell under anode‐limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm−2 at 0.7 V and an open‐circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F. Triple protection: A stable, high‐current‐density‐based H2‐oxidation bioanode is presented. It is equipped with [NiFeSe] variants that show enhanced O2 tolerance, which are immobilized and wired to electrode surfaces with a low‐potential viologen‐modified polymer. The polymer acts simultaneously as a high‐potential and O2 shield. The triply protected bioanodes are incorporated in membrane‐free biofuel cells, which reveal benchmark performances at moderate catalyst loading.</description><subject>Addition polymerization</subject><subject>Biochemical fuel cells</subject><subject>Biodiesel fuels</subject><subject>bioelectrocatalysis</subject><subject>biofuel cells</subject><subject>Biofuels</subject><subject>Catalysts</subject><subject>Circuits</subject><subject>Current density</subject><subject>Deactivation</subject><subject>Diffusion</subject><subject>enzyme engineering</subject><subject>Glassy carbon</subject><subject>Hydrogenase</subject><subject>hydrogenases</subject><subject>Iron compounds</subject><subject>Nickel compounds</subject><subject>Oxidation</subject><subject>Polymers</subject><subject>redox polymers</subject><subject>Stability analysis</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpVkc9uEzEQxi0EoqVw5WyJc8qs7fXGFyTYtgSpIoiUPxJCltf2Jq42drAd2r3xCFx5PZ4Er1pF4jTfzPz0aUYfQs8rOK0AyEudkj4lQABACPEAHVdzzmY1Z18fHjStjtCTlK4BOAjOH6MjSigVdM6P0Z-P1oTbv79-fwjDuLWxqC8uWoO_vXcXdmW_48VoYlhbr5LFn1V0yueEb1ze4HO_UV4XdknwKqvODS6PuA8RX0W3G-zkGkO2Ohdm4dabMmj3MVqfizqzPk38gpRmeeuMyi54_MYF5YOx6Sl61Ksh2Wf39QR9uji_ahezy-Xbd-3ry9mazEHMOsrK8w1jpq7qRtmm6jXUCqgR0GkhwNS9Ub3pKwPdvG50V5ZcUU2Igo4zeoJe3fnu9t3WGl2ui2qQu-i2Ko4yKCf_33i3kevwUzZMNCAmgxf3BjH82NuU5XXYR19uloSRumlqxnmhxB114wY7HuwrkFOOcspRHnKU7WrVHjr6D7CfnB0</recordid><startdate>20200722</startdate><enddate>20200722</enddate><creator>Ruff, Adrian</creator><creator>Szczesny, Julian</creator><creator>Vega, Maria</creator><creator>Zacarias, Sonia</creator><creator>Matias, Pedro M.</creator><creator>Gounel, Sébastien</creator><creator>Mano, Nicolas</creator><creator>Pereira, Inês A. C.</creator><creator>Schuhmann, Wolfgang</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0003-2916-5223</orcidid><orcidid>https://orcid.org/0000-0002-7602-9657</orcidid><orcidid>https://orcid.org/0000-0001-7084-9323</orcidid><orcidid>https://orcid.org/0000-0001-5659-8556</orcidid><orcidid>https://orcid.org/0000-0001-6170-451X</orcidid><orcidid>https://orcid.org/0000-0002-8842-8057</orcidid></search><sort><creationdate>20200722</creationdate><title>Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes</title><author>Ruff, Adrian ; Szczesny, Julian ; Vega, Maria ; Zacarias, Sonia ; Matias, Pedro M. ; Gounel, Sébastien ; Mano, Nicolas ; Pereira, Inês A. C. ; Schuhmann, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2809-b34200744d5157ae71fc05a03d90bc990d5fdafdf1d0b857cb5a06a3c22a0b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addition polymerization</topic><topic>Biochemical fuel cells</topic><topic>Biodiesel fuels</topic><topic>bioelectrocatalysis</topic><topic>biofuel cells</topic><topic>Biofuels</topic><topic>Catalysts</topic><topic>Circuits</topic><topic>Current density</topic><topic>Deactivation</topic><topic>Diffusion</topic><topic>enzyme engineering</topic><topic>Glassy carbon</topic><topic>Hydrogenase</topic><topic>hydrogenases</topic><topic>Iron compounds</topic><topic>Nickel compounds</topic><topic>Oxidation</topic><topic>Polymers</topic><topic>redox polymers</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruff, Adrian</creatorcontrib><creatorcontrib>Szczesny, Julian</creatorcontrib><creatorcontrib>Vega, Maria</creatorcontrib><creatorcontrib>Zacarias, Sonia</creatorcontrib><creatorcontrib>Matias, Pedro M.</creatorcontrib><creatorcontrib>Gounel, Sébastien</creatorcontrib><creatorcontrib>Mano, Nicolas</creatorcontrib><creatorcontrib>Pereira, Inês A. C.</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruff, Adrian</au><au>Szczesny, Julian</au><au>Vega, Maria</au><au>Zacarias, Sonia</au><au>Matias, Pedro M.</au><au>Gounel, Sébastien</au><au>Mano, Nicolas</au><au>Pereira, Inês A. C.</au><au>Schuhmann, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes</atitle><jtitle>ChemSusChem</jtitle><date>2020-07-22</date><risdate>2020</risdate><volume>13</volume><issue>14</issue><spage>3627</spage><epage>3635</epage><pages>3627-3635</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2‐oxidation catalysts in H2/O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low‐potential viologen‐modified redox polymers and evaluated with respect to H2‐oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm−2 for G491A and (476±172) μA cm−2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high‐potential inactivation, establishing a triple protection for the bioanode. The use of gas‐diffusion bioanodes provided current densities for H2‐oxidation of up to 6.3 mA cm−2. Combination of the gas‐diffusion bioanode with a bilirubin oxidase‐based gas‐diffusion O2‐reducing biocathode in a membrane‐free biofuel cell under anode‐limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm−2 at 0.7 V and an open‐circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F. Triple protection: A stable, high‐current‐density‐based H2‐oxidation bioanode is presented. It is equipped with [NiFeSe] variants that show enhanced O2 tolerance, which are immobilized and wired to electrode surfaces with a low‐potential viologen‐modified polymer. The polymer acts simultaneously as a high‐potential and O2 shield. The triply protected bioanodes are incorporated in membrane‐free biofuel cells, which reveal benchmark performances at moderate catalyst loading.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32339386</pmid><doi>10.1002/cssc.202000999</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0003-2916-5223</orcidid><orcidid>https://orcid.org/0000-0002-7602-9657</orcidid><orcidid>https://orcid.org/0000-0001-7084-9323</orcidid><orcidid>https://orcid.org/0000-0001-5659-8556</orcidid><orcidid>https://orcid.org/0000-0001-6170-451X</orcidid><orcidid>https://orcid.org/0000-0002-8842-8057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2020-07, Vol.13 (14), p.3627-3635
issn 1864-5631
1864-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497094
source Access via Wiley Online Library
subjects Addition polymerization
Biochemical fuel cells
Biodiesel fuels
bioelectrocatalysis
biofuel cells
Biofuels
Catalysts
Circuits
Current density
Deactivation
Diffusion
enzyme engineering
Glassy carbon
Hydrogenase
hydrogenases
Iron compounds
Nickel compounds
Oxidation
Polymers
redox polymers
Stability analysis
title Redox‐Polymer‐Wired [NiFeSe] Hydrogenase Variants with Enhanced O2 Stability for Triple‐Protected High‐Current‐Density H2‐Oxidation Bioanodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%E2%80%90Polymer%E2%80%90Wired%20%5BNiFeSe%5D%20Hydrogenase%20Variants%20with%20Enhanced%20O2%20Stability%20for%20Triple%E2%80%90Protected%20High%E2%80%90Current%E2%80%90Density%20H2%E2%80%90Oxidation%20Bioanodes&rft.jtitle=ChemSusChem&rft.au=Ruff,%20Adrian&rft.date=2020-07-22&rft.volume=13&rft.issue=14&rft.spage=3627&rft.epage=3635&rft.pages=3627-3635&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202000999&rft_dat=%3Cproquest_pubme%3E2425775466%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425775466&rft_id=info:pmid/32339386&rfr_iscdi=true