DNA Nanostructures for Targeted Antimicrobial Delivery

We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-07, Vol.59 (31), p.12698-12702
Hauptverfasser: Mela, Ioanna, Vallejo‐Ramirez, Pedro P., Makarchuk, Stanislaw, Christie, Graham, Bailey, David, Henderson, Robert M., Sugiyama, Hiroshi, Endo, Masayuki, Kaminski, Clemens F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12702
container_issue 31
container_start_page 12698
container_title Angewandte Chemie International Edition
container_volume 59
creator Mela, Ioanna
Vallejo‐Ramirez, Pedro P.
Makarchuk, Stanislaw
Christie, Graham
Bailey, David
Henderson, Robert M.
Sugiyama, Hiroshi
Endo, Masayuki
Kaminski, Clemens F.
description We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle. Antibiotic resistance is a growing health issue that is now rendering humans vulnerable once again to infections that have been treatable for decades. Various approaches have been proposed to overcome this threat and effectively treat bacterial infections. DNA nanostructures, functionalized with aptamers, were used as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner, to destroy bacterial targets.
doi_str_mv 10.1002/anie.202002740
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425554109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5710-bef7e358bacdfb5b5bf0dbd8c7b822136afb74ae7dfd54b7ffba4fcc1db7a0c3</originalsourceid><addsrcrecordid>eNqFkM1PwjAYhxujEUWvHs0Sz8N-rOt2MSGASkLwwr3pJ5aMDdsNw39vCYh6Mj28b9KnT9_3B8AdggMEIX4UtTMDDHHsWQbPwBWiGKWEMXIe-4yQlBUU9cB1CKvIFAXML0GPYFyyvMRXIB_Ph8lc1E1ofafazpuQ2MYnC-GXpjU6GdatWzvlG-lElYxN5bbG727AhRVVMLfH2geL58li9JrO3l6mo-EsVZQhmEpjmSG0kEJpK2k8FmqpC8VkgTEiubCSZcIwbTXNJLNWiswqhbRkAirSB08H7aaTa6OVqVsvKr7xbi38jjfC8b83tXvny2bLWVbmZYmi4OEo8M1HZ0LLV03n6zgyxxmmlGYIlpEaHKi4Zgje2NMPCPJ9zHwfMz_FHB_c_57rhH_nGoHyAHy6yuz-0fHhfDr5kX8BQZ-MQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425554109</pqid></control><display><type>article</type><title>DNA Nanostructures for Targeted Antimicrobial Delivery</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Mela, Ioanna ; Vallejo‐Ramirez, Pedro P. ; Makarchuk, Stanislaw ; Christie, Graham ; Bailey, David ; Henderson, Robert M. ; Sugiyama, Hiroshi ; Endo, Masayuki ; Kaminski, Clemens F.</creator><creatorcontrib>Mela, Ioanna ; Vallejo‐Ramirez, Pedro P. ; Makarchuk, Stanislaw ; Christie, Graham ; Bailey, David ; Henderson, Robert M. ; Sugiyama, Hiroshi ; Endo, Masayuki ; Kaminski, Clemens F.</creatorcontrib><description>We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle. Antibiotic resistance is a growing health issue that is now rendering humans vulnerable once again to infections that have been treatable for decades. Various approaches have been proposed to overcome this threat and effectively treat bacterial infections. DNA nanostructures, functionalized with aptamers, were used as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner, to destroy bacterial targets.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202002740</identifier><identifier>PMID: 32297692</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; antimicrobial ; Antimicrobial agents ; Aptamers ; Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - toxicity ; Atomic force microscopy ; Bacillus subtilis - chemistry ; Bacillus subtilis - drug effects ; bionanotechnology ; Chlorocebus aethiops ; Communication ; Communications ; COS Cells ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - toxicity ; DNA nanostructures ; Drug Carriers - chemistry ; Drug Carriers - toxicity ; Drug delivery ; Drug delivery systems ; dSTORM ; E coli ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - pharmacology ; Escherichia coli - chemistry ; Escherichia coli - drug effects ; Lysozyme ; Microbial Sensitivity Tests ; Microscopy ; Muramidase - chemistry ; Muramidase - pharmacology ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - toxicity ; Nucleic Acid Conformation ; Stochasticity</subject><ispartof>Angewandte Chemie International Edition, 2020-07, Vol.59 (31), p.12698-12702</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5710-bef7e358bacdfb5b5bf0dbd8c7b822136afb74ae7dfd54b7ffba4fcc1db7a0c3</citedby><cites>FETCH-LOGICAL-c5710-bef7e358bacdfb5b5bf0dbd8c7b822136afb74ae7dfd54b7ffba4fcc1db7a0c3</cites><orcidid>0000-0003-0957-3764 ; 0000-0002-5194-0962 ; 0000-0002-7879-6761 ; 0000-0002-2914-9971 ; 0000-0001-7177-9646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202002740$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202002740$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32297692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mela, Ioanna</creatorcontrib><creatorcontrib>Vallejo‐Ramirez, Pedro P.</creatorcontrib><creatorcontrib>Makarchuk, Stanislaw</creatorcontrib><creatorcontrib>Christie, Graham</creatorcontrib><creatorcontrib>Bailey, David</creatorcontrib><creatorcontrib>Henderson, Robert M.</creatorcontrib><creatorcontrib>Sugiyama, Hiroshi</creatorcontrib><creatorcontrib>Endo, Masayuki</creatorcontrib><creatorcontrib>Kaminski, Clemens F.</creatorcontrib><title>DNA Nanostructures for Targeted Antimicrobial Delivery</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle. Antibiotic resistance is a growing health issue that is now rendering humans vulnerable once again to infections that have been treatable for decades. Various approaches have been proposed to overcome this threat and effectively treat bacterial infections. DNA nanostructures, functionalized with aptamers, were used as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner, to destroy bacterial targets.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>antimicrobial</subject><subject>Antimicrobial agents</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - toxicity</subject><subject>Atomic force microscopy</subject><subject>Bacillus subtilis - chemistry</subject><subject>Bacillus subtilis - drug effects</subject><subject>bionanotechnology</subject><subject>Chlorocebus aethiops</subject><subject>Communication</subject><subject>Communications</subject><subject>COS Cells</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - toxicity</subject><subject>DNA nanostructures</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - toxicity</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>dSTORM</subject><subject>E coli</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - pharmacology</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - drug effects</subject><subject>Lysozyme</subject><subject>Microbial Sensitivity Tests</subject><subject>Microscopy</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - pharmacology</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - toxicity</subject><subject>Nucleic Acid Conformation</subject><subject>Stochasticity</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkM1PwjAYhxujEUWvHs0Sz8N-rOt2MSGASkLwwr3pJ5aMDdsNw39vCYh6Mj28b9KnT9_3B8AdggMEIX4UtTMDDHHsWQbPwBWiGKWEMXIe-4yQlBUU9cB1CKvIFAXML0GPYFyyvMRXIB_Ph8lc1E1ofafazpuQ2MYnC-GXpjU6GdatWzvlG-lElYxN5bbG727AhRVVMLfH2geL58li9JrO3l6mo-EsVZQhmEpjmSG0kEJpK2k8FmqpC8VkgTEiubCSZcIwbTXNJLNWiswqhbRkAirSB08H7aaTa6OVqVsvKr7xbi38jjfC8b83tXvny2bLWVbmZYmi4OEo8M1HZ0LLV03n6zgyxxmmlGYIlpEaHKi4Zgje2NMPCPJ9zHwfMz_FHB_c_57rhH_nGoHyAHy6yuz-0fHhfDr5kX8BQZ-MQA</recordid><startdate>20200727</startdate><enddate>20200727</enddate><creator>Mela, Ioanna</creator><creator>Vallejo‐Ramirez, Pedro P.</creator><creator>Makarchuk, Stanislaw</creator><creator>Christie, Graham</creator><creator>Bailey, David</creator><creator>Henderson, Robert M.</creator><creator>Sugiyama, Hiroshi</creator><creator>Endo, Masayuki</creator><creator>Kaminski, Clemens F.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0957-3764</orcidid><orcidid>https://orcid.org/0000-0002-5194-0962</orcidid><orcidid>https://orcid.org/0000-0002-7879-6761</orcidid><orcidid>https://orcid.org/0000-0002-2914-9971</orcidid><orcidid>https://orcid.org/0000-0001-7177-9646</orcidid></search><sort><creationdate>20200727</creationdate><title>DNA Nanostructures for Targeted Antimicrobial Delivery</title><author>Mela, Ioanna ; Vallejo‐Ramirez, Pedro P. ; Makarchuk, Stanislaw ; Christie, Graham ; Bailey, David ; Henderson, Robert M. ; Sugiyama, Hiroshi ; Endo, Masayuki ; Kaminski, Clemens F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5710-bef7e358bacdfb5b5bf0dbd8c7b822136afb74ae7dfd54b7ffba4fcc1db7a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>antimicrobial</topic><topic>Antimicrobial agents</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - toxicity</topic><topic>Atomic force microscopy</topic><topic>Bacillus subtilis - chemistry</topic><topic>Bacillus subtilis - drug effects</topic><topic>bionanotechnology</topic><topic>Chlorocebus aethiops</topic><topic>Communication</topic><topic>Communications</topic><topic>COS Cells</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - toxicity</topic><topic>DNA nanostructures</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - toxicity</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>dSTORM</topic><topic>E coli</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - pharmacology</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - drug effects</topic><topic>Lysozyme</topic><topic>Microbial Sensitivity Tests</topic><topic>Microscopy</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - pharmacology</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - toxicity</topic><topic>Nucleic Acid Conformation</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mela, Ioanna</creatorcontrib><creatorcontrib>Vallejo‐Ramirez, Pedro P.</creatorcontrib><creatorcontrib>Makarchuk, Stanislaw</creatorcontrib><creatorcontrib>Christie, Graham</creatorcontrib><creatorcontrib>Bailey, David</creatorcontrib><creatorcontrib>Henderson, Robert M.</creatorcontrib><creatorcontrib>Sugiyama, Hiroshi</creatorcontrib><creatorcontrib>Endo, Masayuki</creatorcontrib><creatorcontrib>Kaminski, Clemens F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mela, Ioanna</au><au>Vallejo‐Ramirez, Pedro P.</au><au>Makarchuk, Stanislaw</au><au>Christie, Graham</au><au>Bailey, David</au><au>Henderson, Robert M.</au><au>Sugiyama, Hiroshi</au><au>Endo, Masayuki</au><au>Kaminski, Clemens F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA Nanostructures for Targeted Antimicrobial Delivery</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-07-27</date><risdate>2020</risdate><volume>59</volume><issue>31</issue><spage>12698</spage><epage>12702</epage><pages>12698-12702</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle. Antibiotic resistance is a growing health issue that is now rendering humans vulnerable once again to infections that have been treatable for decades. Various approaches have been proposed to overcome this threat and effectively treat bacterial infections. DNA nanostructures, functionalized with aptamers, were used as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner, to destroy bacterial targets.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32297692</pmid><doi>10.1002/anie.202002740</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0957-3764</orcidid><orcidid>https://orcid.org/0000-0002-5194-0962</orcidid><orcidid>https://orcid.org/0000-0002-7879-6761</orcidid><orcidid>https://orcid.org/0000-0002-2914-9971</orcidid><orcidid>https://orcid.org/0000-0001-7177-9646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-07, Vol.59 (31), p.12698-12702
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496991
source MEDLINE; Access via Wiley Online Library
subjects Animals
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
Antiinfectives and antibacterials
antimicrobial
Antimicrobial agents
Aptamers
Aptamers, Nucleotide - chemistry
Aptamers, Nucleotide - toxicity
Atomic force microscopy
Bacillus subtilis - chemistry
Bacillus subtilis - drug effects
bionanotechnology
Chlorocebus aethiops
Communication
Communications
COS Cells
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - toxicity
DNA nanostructures
Drug Carriers - chemistry
Drug Carriers - toxicity
Drug delivery
Drug delivery systems
dSTORM
E coli
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - pharmacology
Escherichia coli - chemistry
Escherichia coli - drug effects
Lysozyme
Microbial Sensitivity Tests
Microscopy
Muramidase - chemistry
Muramidase - pharmacology
Nanostructure
Nanostructures - chemistry
Nanostructures - toxicity
Nucleic Acid Conformation
Stochasticity
title DNA Nanostructures for Targeted Antimicrobial Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20Nanostructures%20for%20Targeted%20Antimicrobial%20Delivery&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Mela,%20Ioanna&rft.date=2020-07-27&rft.volume=59&rft.issue=31&rft.spage=12698&rft.epage=12702&rft.pages=12698-12702&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202002740&rft_dat=%3Cproquest_pubme%3E2425554109%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425554109&rft_id=info:pmid/32297692&rfr_iscdi=true