DNA Nanostructures for Targeted Antimicrobial Delivery
We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct st...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-07, Vol.59 (31), p.12698-12702 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12702 |
---|---|
container_issue | 31 |
container_start_page | 12698 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Mela, Ioanna Vallejo‐Ramirez, Pedro P. Makarchuk, Stanislaw Christie, Graham Bailey, David Henderson, Robert M. Sugiyama, Hiroshi Endo, Masayuki Kaminski, Clemens F. |
description | We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle.
Antibiotic resistance is a growing health issue that is now rendering humans vulnerable once again to infections that have been treatable for decades. Various approaches have been proposed to overcome this threat and effectively treat bacterial infections. DNA nanostructures, functionalized with aptamers, were used as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner, to destroy bacterial targets. |
doi_str_mv | 10.1002/anie.202002740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425554109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5710-bef7e358bacdfb5b5bf0dbd8c7b822136afb74ae7dfd54b7ffba4fcc1db7a0c3</originalsourceid><addsrcrecordid>eNqFkM1PwjAYhxujEUWvHs0Sz8N-rOt2MSGASkLwwr3pJ5aMDdsNw39vCYh6Mj28b9KnT9_3B8AdggMEIX4UtTMDDHHsWQbPwBWiGKWEMXIe-4yQlBUU9cB1CKvIFAXML0GPYFyyvMRXIB_Ph8lc1E1ofafazpuQ2MYnC-GXpjU6GdatWzvlG-lElYxN5bbG727AhRVVMLfH2geL58li9JrO3l6mo-EsVZQhmEpjmSG0kEJpK2k8FmqpC8VkgTEiubCSZcIwbTXNJLNWiswqhbRkAirSB08H7aaTa6OVqVsvKr7xbi38jjfC8b83tXvny2bLWVbmZYmi4OEo8M1HZ0LLV03n6zgyxxmmlGYIlpEaHKi4Zgje2NMPCPJ9zHwfMz_FHB_c_57rhH_nGoHyAHy6yuz-0fHhfDr5kX8BQZ-MQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425554109</pqid></control><display><type>article</type><title>DNA Nanostructures for Targeted Antimicrobial Delivery</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Mela, Ioanna ; Vallejo‐Ramirez, Pedro P. ; Makarchuk, Stanislaw ; Christie, Graham ; Bailey, David ; Henderson, Robert M. ; Sugiyama, Hiroshi ; Endo, Masayuki ; Kaminski, Clemens F.</creator><creatorcontrib>Mela, Ioanna ; Vallejo‐Ramirez, Pedro P. ; Makarchuk, Stanislaw ; Christie, Graham ; Bailey, David ; Henderson, Robert M. ; Sugiyama, Hiroshi ; Endo, Masayuki ; Kaminski, Clemens F.</creatorcontrib><description>We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle.
Antibiotic resistance is a growing health issue that is now rendering humans vulnerable once again to infections that have been treatable for decades. Various approaches have been proposed to overcome this threat and effectively treat bacterial infections. DNA nanostructures, functionalized with aptamers, were used as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner, to destroy bacterial targets.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202002740</identifier><identifier>PMID: 32297692</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Antiinfectives and antibacterials ; antimicrobial ; Antimicrobial agents ; Aptamers ; Aptamers, Nucleotide - chemistry ; Aptamers, Nucleotide - toxicity ; Atomic force microscopy ; Bacillus subtilis - chemistry ; Bacillus subtilis - drug effects ; bionanotechnology ; Chlorocebus aethiops ; Communication ; Communications ; COS Cells ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - toxicity ; DNA nanostructures ; Drug Carriers - chemistry ; Drug Carriers - toxicity ; Drug delivery ; Drug delivery systems ; dSTORM ; E coli ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - pharmacology ; Escherichia coli - chemistry ; Escherichia coli - drug effects ; Lysozyme ; Microbial Sensitivity Tests ; Microscopy ; Muramidase - chemistry ; Muramidase - pharmacology ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - toxicity ; Nucleic Acid Conformation ; Stochasticity</subject><ispartof>Angewandte Chemie International Edition, 2020-07, Vol.59 (31), p.12698-12702</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5710-bef7e358bacdfb5b5bf0dbd8c7b822136afb74ae7dfd54b7ffba4fcc1db7a0c3</citedby><cites>FETCH-LOGICAL-c5710-bef7e358bacdfb5b5bf0dbd8c7b822136afb74ae7dfd54b7ffba4fcc1db7a0c3</cites><orcidid>0000-0003-0957-3764 ; 0000-0002-5194-0962 ; 0000-0002-7879-6761 ; 0000-0002-2914-9971 ; 0000-0001-7177-9646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202002740$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202002740$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32297692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mela, Ioanna</creatorcontrib><creatorcontrib>Vallejo‐Ramirez, Pedro P.</creatorcontrib><creatorcontrib>Makarchuk, Stanislaw</creatorcontrib><creatorcontrib>Christie, Graham</creatorcontrib><creatorcontrib>Bailey, David</creatorcontrib><creatorcontrib>Henderson, Robert M.</creatorcontrib><creatorcontrib>Sugiyama, Hiroshi</creatorcontrib><creatorcontrib>Endo, Masayuki</creatorcontrib><creatorcontrib>Kaminski, Clemens F.</creatorcontrib><title>DNA Nanostructures for Targeted Antimicrobial Delivery</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle.
Antibiotic resistance is a growing health issue that is now rendering humans vulnerable once again to infections that have been treatable for decades. Various approaches have been proposed to overcome this threat and effectively treat bacterial infections. DNA nanostructures, functionalized with aptamers, were used as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner, to destroy bacterial targets.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>antimicrobial</subject><subject>Antimicrobial agents</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Aptamers, Nucleotide - toxicity</subject><subject>Atomic force microscopy</subject><subject>Bacillus subtilis - chemistry</subject><subject>Bacillus subtilis - drug effects</subject><subject>bionanotechnology</subject><subject>Chlorocebus aethiops</subject><subject>Communication</subject><subject>Communications</subject><subject>COS Cells</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - toxicity</subject><subject>DNA nanostructures</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - toxicity</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>dSTORM</subject><subject>E coli</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - pharmacology</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - drug effects</subject><subject>Lysozyme</subject><subject>Microbial Sensitivity Tests</subject><subject>Microscopy</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - pharmacology</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - toxicity</subject><subject>Nucleic Acid Conformation</subject><subject>Stochasticity</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkM1PwjAYhxujEUWvHs0Sz8N-rOt2MSGASkLwwr3pJ5aMDdsNw39vCYh6Mj28b9KnT9_3B8AdggMEIX4UtTMDDHHsWQbPwBWiGKWEMXIe-4yQlBUU9cB1CKvIFAXML0GPYFyyvMRXIB_Ph8lc1E1ofafazpuQ2MYnC-GXpjU6GdatWzvlG-lElYxN5bbG727AhRVVMLfH2geL58li9JrO3l6mo-EsVZQhmEpjmSG0kEJpK2k8FmqpC8VkgTEiubCSZcIwbTXNJLNWiswqhbRkAirSB08H7aaTa6OVqVsvKr7xbi38jjfC8b83tXvny2bLWVbmZYmi4OEo8M1HZ0LLV03n6zgyxxmmlGYIlpEaHKi4Zgje2NMPCPJ9zHwfMz_FHB_c_57rhH_nGoHyAHy6yuz-0fHhfDr5kX8BQZ-MQA</recordid><startdate>20200727</startdate><enddate>20200727</enddate><creator>Mela, Ioanna</creator><creator>Vallejo‐Ramirez, Pedro P.</creator><creator>Makarchuk, Stanislaw</creator><creator>Christie, Graham</creator><creator>Bailey, David</creator><creator>Henderson, Robert M.</creator><creator>Sugiyama, Hiroshi</creator><creator>Endo, Masayuki</creator><creator>Kaminski, Clemens F.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0957-3764</orcidid><orcidid>https://orcid.org/0000-0002-5194-0962</orcidid><orcidid>https://orcid.org/0000-0002-7879-6761</orcidid><orcidid>https://orcid.org/0000-0002-2914-9971</orcidid><orcidid>https://orcid.org/0000-0001-7177-9646</orcidid></search><sort><creationdate>20200727</creationdate><title>DNA Nanostructures for Targeted Antimicrobial Delivery</title><author>Mela, Ioanna ; Vallejo‐Ramirez, Pedro P. ; Makarchuk, Stanislaw ; Christie, Graham ; Bailey, David ; Henderson, Robert M. ; Sugiyama, Hiroshi ; Endo, Masayuki ; Kaminski, Clemens F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5710-bef7e358bacdfb5b5bf0dbd8c7b822136afb74ae7dfd54b7ffba4fcc1db7a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>antimicrobial</topic><topic>Antimicrobial agents</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Aptamers, Nucleotide - toxicity</topic><topic>Atomic force microscopy</topic><topic>Bacillus subtilis - chemistry</topic><topic>Bacillus subtilis - drug effects</topic><topic>bionanotechnology</topic><topic>Chlorocebus aethiops</topic><topic>Communication</topic><topic>Communications</topic><topic>COS Cells</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - toxicity</topic><topic>DNA nanostructures</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - toxicity</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>dSTORM</topic><topic>E coli</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - pharmacology</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - drug effects</topic><topic>Lysozyme</topic><topic>Microbial Sensitivity Tests</topic><topic>Microscopy</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - pharmacology</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - toxicity</topic><topic>Nucleic Acid Conformation</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mela, Ioanna</creatorcontrib><creatorcontrib>Vallejo‐Ramirez, Pedro P.</creatorcontrib><creatorcontrib>Makarchuk, Stanislaw</creatorcontrib><creatorcontrib>Christie, Graham</creatorcontrib><creatorcontrib>Bailey, David</creatorcontrib><creatorcontrib>Henderson, Robert M.</creatorcontrib><creatorcontrib>Sugiyama, Hiroshi</creatorcontrib><creatorcontrib>Endo, Masayuki</creatorcontrib><creatorcontrib>Kaminski, Clemens F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mela, Ioanna</au><au>Vallejo‐Ramirez, Pedro P.</au><au>Makarchuk, Stanislaw</au><au>Christie, Graham</au><au>Bailey, David</au><au>Henderson, Robert M.</au><au>Sugiyama, Hiroshi</au><au>Endo, Masayuki</au><au>Kaminski, Clemens F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA Nanostructures for Targeted Antimicrobial Delivery</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-07-27</date><risdate>2020</risdate><volume>59</volume><issue>31</issue><spage>12698</spage><epage>12702</epage><pages>12698-12702</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle.
Antibiotic resistance is a growing health issue that is now rendering humans vulnerable once again to infections that have been treatable for decades. Various approaches have been proposed to overcome this threat and effectively treat bacterial infections. DNA nanostructures, functionalized with aptamers, were used as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner, to destroy bacterial targets.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32297692</pmid><doi>10.1002/anie.202002740</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0957-3764</orcidid><orcidid>https://orcid.org/0000-0002-5194-0962</orcidid><orcidid>https://orcid.org/0000-0002-7879-6761</orcidid><orcidid>https://orcid.org/0000-0002-2914-9971</orcidid><orcidid>https://orcid.org/0000-0001-7177-9646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-07, Vol.59 (31), p.12698-12702 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496991 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibiotic resistance Antibiotics Antiinfectives and antibacterials antimicrobial Antimicrobial agents Aptamers Aptamers, Nucleotide - chemistry Aptamers, Nucleotide - toxicity Atomic force microscopy Bacillus subtilis - chemistry Bacillus subtilis - drug effects bionanotechnology Chlorocebus aethiops Communication Communications COS Cells Deoxyribonucleic acid DNA DNA - chemistry DNA - toxicity DNA nanostructures Drug Carriers - chemistry Drug Carriers - toxicity Drug delivery Drug delivery systems dSTORM E coli Enzymes, Immobilized - chemistry Enzymes, Immobilized - pharmacology Escherichia coli - chemistry Escherichia coli - drug effects Lysozyme Microbial Sensitivity Tests Microscopy Muramidase - chemistry Muramidase - pharmacology Nanostructure Nanostructures - chemistry Nanostructures - toxicity Nucleic Acid Conformation Stochasticity |
title | DNA Nanostructures for Targeted Antimicrobial Delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20Nanostructures%20for%20Targeted%20Antimicrobial%20Delivery&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Mela,%20Ioanna&rft.date=2020-07-27&rft.volume=59&rft.issue=31&rft.spage=12698&rft.epage=12702&rft.pages=12698-12702&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202002740&rft_dat=%3Cproquest_pubme%3E2425554109%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425554109&rft_id=info:pmid/32297692&rfr_iscdi=true |