Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase
DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonucleas...
Gespeichert in:
Veröffentlicht in: | IUBMB life 2020-08, Vol.72 (8), p.1622-1633 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1633 |
---|---|
container_issue | 8 |
container_start_page | 1622 |
container_title | IUBMB life |
container_volume | 72 |
creator | Brewster, Jodi L. Tolun, Gökhan |
description | DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover. |
doi_str_mv | 10.1002/iub.2343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420155789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4383-6743ae5e26e0d4e7d503a12f9ddc34d9b6e8b78a95389c43a1db93da59bcc8323</originalsourceid><addsrcrecordid>eNp1kc9qFTEUhwex2FoFn0ACbtxMzZ_JzMSFoEXbC4WC2HU4Sc60KTOTazJTvTsfwWf0Scy011srmE0SzpePc_IriheMHjFK-Rs_myMuKvGoOGCSs7KWkj3enSuxXzxN6Zrm1VD1pNgXvOZMKHFQpFPoOwLE4jjNcUNCRwzYCaMP6yu4RNLDYByQiDYMxo-Q8C1ZjeTGTzGQNM3OY1pebTn8HsbZ9pg5AqMjn9H9-vHT4AT5OiL0ufCs2OugT_h8ux8WF58-fjk-Lc_OT1bH789KW4lWlHVTCUCJvEbqKmycpAIY75RzVlROmRpb07SgpGhVfgLMGSUcSGWsbQUXh8W7O-96NgO6ZcQIvV5HP0Dc6ABeP6yM_kpfhhvdVCr_Gs2C11tBDF9nTJMefLLY9zBimJPmFadMyqZVGX31D3od5jjm8RZKqqoVUt4LbQwpRex2zTCqlyR1TlIvSWb05d_N78A_0WWgvAO--R43_xXp1cWHW-FvmVap2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425948355</pqid></control><display><type>article</type><title>Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Brewster, Jodi L. ; Tolun, Gökhan</creator><creatorcontrib>Brewster, Jodi L. ; Tolun, Gökhan</creatorcontrib><description>DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.</description><identifier>ISSN: 1521-6543</identifier><identifier>EISSN: 1521-6551</identifier><identifier>DOI: 10.1002/iub.2343</identifier><identifier>PMID: 32621393</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>annealase ; Critical Review ; Critical Reviews ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA repair ; Exonuclease ; Homologous recombination ; phage lambda ; Phages ; Recombinase ; Red‐beta ; single‐stranded DNA‐binding protein ; two‐component recombination</subject><ispartof>IUBMB life, 2020-08, Vol.72 (8), p.1622-1633</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.</rights><rights>2020 The Authors. IUBMB Life published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4383-6743ae5e26e0d4e7d503a12f9ddc34d9b6e8b78a95389c43a1db93da59bcc8323</citedby><cites>FETCH-LOGICAL-c4383-6743ae5e26e0d4e7d503a12f9ddc34d9b6e8b78a95389c43a1db93da59bcc8323</cites><orcidid>0000-0001-6166-9451 ; 0000-0001-8569-1813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fiub.2343$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fiub.2343$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32621393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brewster, Jodi L.</creatorcontrib><creatorcontrib>Tolun, Gökhan</creatorcontrib><title>Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase</title><title>IUBMB life</title><addtitle>IUBMB Life</addtitle><description>DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.</description><subject>annealase</subject><subject>Critical Review</subject><subject>Critical Reviews</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Exonuclease</subject><subject>Homologous recombination</subject><subject>phage lambda</subject><subject>Phages</subject><subject>Recombinase</subject><subject>Red‐beta</subject><subject>single‐stranded DNA‐binding protein</subject><subject>two‐component recombination</subject><issn>1521-6543</issn><issn>1521-6551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kc9qFTEUhwex2FoFn0ACbtxMzZ_JzMSFoEXbC4WC2HU4Sc60KTOTazJTvTsfwWf0Scy011srmE0SzpePc_IriheMHjFK-Rs_myMuKvGoOGCSs7KWkj3enSuxXzxN6Zrm1VD1pNgXvOZMKHFQpFPoOwLE4jjNcUNCRwzYCaMP6yu4RNLDYByQiDYMxo-Q8C1ZjeTGTzGQNM3OY1pebTn8HsbZ9pg5AqMjn9H9-vHT4AT5OiL0ufCs2OugT_h8ux8WF58-fjk-Lc_OT1bH789KW4lWlHVTCUCJvEbqKmycpAIY75RzVlROmRpb07SgpGhVfgLMGSUcSGWsbQUXh8W7O-96NgO6ZcQIvV5HP0Dc6ABeP6yM_kpfhhvdVCr_Gs2C11tBDF9nTJMefLLY9zBimJPmFadMyqZVGX31D3od5jjm8RZKqqoVUt4LbQwpRex2zTCqlyR1TlIvSWb05d_N78A_0WWgvAO--R43_xXp1cWHW-FvmVap2Q</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Brewster, Jodi L.</creator><creator>Tolun, Gökhan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6166-9451</orcidid><orcidid>https://orcid.org/0000-0001-8569-1813</orcidid></search><sort><creationdate>202008</creationdate><title>Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase</title><author>Brewster, Jodi L. ; Tolun, Gökhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4383-6743ae5e26e0d4e7d503a12f9ddc34d9b6e8b78a95389c43a1db93da59bcc8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>annealase</topic><topic>Critical Review</topic><topic>Critical Reviews</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Exonuclease</topic><topic>Homologous recombination</topic><topic>phage lambda</topic><topic>Phages</topic><topic>Recombinase</topic><topic>Red‐beta</topic><topic>single‐stranded DNA‐binding protein</topic><topic>two‐component recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brewster, Jodi L.</creatorcontrib><creatorcontrib>Tolun, Gökhan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IUBMB life</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brewster, Jodi L.</au><au>Tolun, Gökhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase</atitle><jtitle>IUBMB life</jtitle><addtitle>IUBMB Life</addtitle><date>2020-08</date><risdate>2020</risdate><volume>72</volume><issue>8</issue><spage>1622</spage><epage>1633</epage><pages>1622-1633</pages><issn>1521-6543</issn><eissn>1521-6551</eissn><abstract>DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32621393</pmid><doi>10.1002/iub.2343</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6166-9451</orcidid><orcidid>https://orcid.org/0000-0001-8569-1813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1521-6543 |
ispartof | IUBMB life, 2020-08, Vol.72 (8), p.1622-1633 |
issn | 1521-6543 1521-6551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496540 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | annealase Critical Review Critical Reviews Deoxyribonucleic acid DNA DNA biosynthesis DNA damage DNA repair Exonuclease Homologous recombination phage lambda Phages Recombinase Red‐beta single‐stranded DNA‐binding protein two‐component recombination |
title | Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Half%20a%20century%20of%20bacteriophage%20lambda%20recombinase:%20In%20vitro%20studies%20of%20lambda%20exonuclease%20and%20Red%E2%80%90beta%20annealase&rft.jtitle=IUBMB%20life&rft.au=Brewster,%20Jodi%20L.&rft.date=2020-08&rft.volume=72&rft.issue=8&rft.spage=1622&rft.epage=1633&rft.pages=1622-1633&rft.issn=1521-6543&rft.eissn=1521-6551&rft_id=info:doi/10.1002/iub.2343&rft_dat=%3Cproquest_pubme%3E2420155789%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425948355&rft_id=info:pmid/32621393&rfr_iscdi=true |