Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase

DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonucleas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IUBMB life 2020-08, Vol.72 (8), p.1622-1633
Hauptverfasser: Brewster, Jodi L., Tolun, Gökhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1633
container_issue 8
container_start_page 1622
container_title IUBMB life
container_volume 72
creator Brewster, Jodi L.
Tolun, Gökhan
description DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.
doi_str_mv 10.1002/iub.2343
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420155789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4383-6743ae5e26e0d4e7d503a12f9ddc34d9b6e8b78a95389c43a1db93da59bcc8323</originalsourceid><addsrcrecordid>eNp1kc9qFTEUhwex2FoFn0ACbtxMzZ_JzMSFoEXbC4WC2HU4Sc60KTOTazJTvTsfwWf0Scy011srmE0SzpePc_IriheMHjFK-Rs_myMuKvGoOGCSs7KWkj3enSuxXzxN6Zrm1VD1pNgXvOZMKHFQpFPoOwLE4jjNcUNCRwzYCaMP6yu4RNLDYByQiDYMxo-Q8C1ZjeTGTzGQNM3OY1pebTn8HsbZ9pg5AqMjn9H9-vHT4AT5OiL0ufCs2OugT_h8ux8WF58-fjk-Lc_OT1bH789KW4lWlHVTCUCJvEbqKmycpAIY75RzVlROmRpb07SgpGhVfgLMGSUcSGWsbQUXh8W7O-96NgO6ZcQIvV5HP0Dc6ABeP6yM_kpfhhvdVCr_Gs2C11tBDF9nTJMefLLY9zBimJPmFadMyqZVGX31D3od5jjm8RZKqqoVUt4LbQwpRex2zTCqlyR1TlIvSWb05d_N78A_0WWgvAO--R43_xXp1cWHW-FvmVap2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425948355</pqid></control><display><type>article</type><title>Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Brewster, Jodi L. ; Tolun, Gökhan</creator><creatorcontrib>Brewster, Jodi L. ; Tolun, Gökhan</creatorcontrib><description>DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.</description><identifier>ISSN: 1521-6543</identifier><identifier>EISSN: 1521-6551</identifier><identifier>DOI: 10.1002/iub.2343</identifier><identifier>PMID: 32621393</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>annealase ; Critical Review ; Critical Reviews ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA repair ; Exonuclease ; Homologous recombination ; phage lambda ; Phages ; Recombinase ; Red‐beta ; single‐stranded DNA‐binding protein ; two‐component recombination</subject><ispartof>IUBMB life, 2020-08, Vol.72 (8), p.1622-1633</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.</rights><rights>2020 The Authors. IUBMB Life published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4383-6743ae5e26e0d4e7d503a12f9ddc34d9b6e8b78a95389c43a1db93da59bcc8323</citedby><cites>FETCH-LOGICAL-c4383-6743ae5e26e0d4e7d503a12f9ddc34d9b6e8b78a95389c43a1db93da59bcc8323</cites><orcidid>0000-0001-6166-9451 ; 0000-0001-8569-1813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fiub.2343$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fiub.2343$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32621393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brewster, Jodi L.</creatorcontrib><creatorcontrib>Tolun, Gökhan</creatorcontrib><title>Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase</title><title>IUBMB life</title><addtitle>IUBMB Life</addtitle><description>DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.</description><subject>annealase</subject><subject>Critical Review</subject><subject>Critical Reviews</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Exonuclease</subject><subject>Homologous recombination</subject><subject>phage lambda</subject><subject>Phages</subject><subject>Recombinase</subject><subject>Red‐beta</subject><subject>single‐stranded DNA‐binding protein</subject><subject>two‐component recombination</subject><issn>1521-6543</issn><issn>1521-6551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kc9qFTEUhwex2FoFn0ACbtxMzZ_JzMSFoEXbC4WC2HU4Sc60KTOTazJTvTsfwWf0Scy011srmE0SzpePc_IriheMHjFK-Rs_myMuKvGoOGCSs7KWkj3enSuxXzxN6Zrm1VD1pNgXvOZMKHFQpFPoOwLE4jjNcUNCRwzYCaMP6yu4RNLDYByQiDYMxo-Q8C1ZjeTGTzGQNM3OY1pebTn8HsbZ9pg5AqMjn9H9-vHT4AT5OiL0ufCs2OugT_h8ux8WF58-fjk-Lc_OT1bH789KW4lWlHVTCUCJvEbqKmycpAIY75RzVlROmRpb07SgpGhVfgLMGSUcSGWsbQUXh8W7O-96NgO6ZcQIvV5HP0Dc6ABeP6yM_kpfhhvdVCr_Gs2C11tBDF9nTJMefLLY9zBimJPmFadMyqZVGX31D3od5jjm8RZKqqoVUt4LbQwpRex2zTCqlyR1TlIvSWb05d_N78A_0WWgvAO--R43_xXp1cWHW-FvmVap2Q</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Brewster, Jodi L.</creator><creator>Tolun, Gökhan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6166-9451</orcidid><orcidid>https://orcid.org/0000-0001-8569-1813</orcidid></search><sort><creationdate>202008</creationdate><title>Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase</title><author>Brewster, Jodi L. ; Tolun, Gökhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4383-6743ae5e26e0d4e7d503a12f9ddc34d9b6e8b78a95389c43a1db93da59bcc8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>annealase</topic><topic>Critical Review</topic><topic>Critical Reviews</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Exonuclease</topic><topic>Homologous recombination</topic><topic>phage lambda</topic><topic>Phages</topic><topic>Recombinase</topic><topic>Red‐beta</topic><topic>single‐stranded DNA‐binding protein</topic><topic>two‐component recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brewster, Jodi L.</creatorcontrib><creatorcontrib>Tolun, Gökhan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IUBMB life</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brewster, Jodi L.</au><au>Tolun, Gökhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase</atitle><jtitle>IUBMB life</jtitle><addtitle>IUBMB Life</addtitle><date>2020-08</date><risdate>2020</risdate><volume>72</volume><issue>8</issue><spage>1622</spage><epage>1633</epage><pages>1622-1633</pages><issn>1521-6543</issn><eissn>1521-6551</eissn><abstract>DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single‐strand annealing homologous DNA recombination is a major mechanism for the repair of double‐stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two‐component recombinase. Redβ annealase and λ‐exonuclease from phage lambda form the archetypal two‐component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32621393</pmid><doi>10.1002/iub.2343</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6166-9451</orcidid><orcidid>https://orcid.org/0000-0001-8569-1813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1521-6543
ispartof IUBMB life, 2020-08, Vol.72 (8), p.1622-1633
issn 1521-6543
1521-6551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496540
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects annealase
Critical Review
Critical Reviews
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA damage
DNA repair
Exonuclease
Homologous recombination
phage lambda
Phages
Recombinase
Red‐beta
single‐stranded DNA‐binding protein
two‐component recombination
title Half a century of bacteriophage lambda recombinase: In vitro studies of lambda exonuclease and Red‐beta annealase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Half%20a%20century%20of%20bacteriophage%20lambda%20recombinase:%20In%20vitro%20studies%20of%20lambda%20exonuclease%20and%20Red%E2%80%90beta%20annealase&rft.jtitle=IUBMB%20life&rft.au=Brewster,%20Jodi%20L.&rft.date=2020-08&rft.volume=72&rft.issue=8&rft.spage=1622&rft.epage=1633&rft.pages=1622-1633&rft.issn=1521-6543&rft.eissn=1521-6551&rft_id=info:doi/10.1002/iub.2343&rft_dat=%3Cproquest_pubme%3E2420155789%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425948355&rft_id=info:pmid/32621393&rfr_iscdi=true