Biomaterial and implant induced ossification: in vitro and in vivo findings

Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tissue engineering and regenerative medicine 2020-08, Vol.14 (8), p.1157-1168
Hauptverfasser: Vallittu, Pekka K., Posti, Jussi P., Piitulainen, Jaakko M., Serlo, Willy, Määttä, Jorma A., Heino, Terhi J., Pagliari, Stefania, Syrjänen, Stina M., Forte, Giancarlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1168
container_issue 8
container_start_page 1157
container_title Journal of tissue engineering and regenerative medicine
container_volume 14
creator Vallittu, Pekka K.
Posti, Jussi P.
Piitulainen, Jaakko M.
Serlo, Willy
Määttä, Jorma A.
Heino, Terhi J.
Pagliari, Stefania
Syrjänen, Stina M.
Forte, Giancarlo
description Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from the perspective of material‐induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly‐formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC‐BG, we cultured human adipose tissue‐derived mesenchymal stromal cells (AD‐MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2O3 control. AD‐MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro‐osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC‐BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC‐BG implant demonstrated material‐induced ossification both in vitro and in vivo.
doi_str_mv 10.1002/term.3056
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433013366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-9f7b57cb4992df541e57d9a40a3e497a9e4dbed4731a7f56a292ffc75ad0a2e43</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoVqsH_4AsePKwbTafxIOgpX5gRZB6DukmqSm7m5rdrfTfm7q16MFTJjMPzwwvAGcZHGQQomFjQjnAkLI9cJQJjFIOId3f1gxR0gPHdb2ITcooPgQ9jEhGOeVH4OnW-VJFgVNFoiqduHJZqKpJXKXb3OjE17WzLleN89VV7CYr1wTfoZvPyic2sq6a1yfgwKqiNqfbtw_e7sbT0UM6ebl_HN1M0pxwxlJh-YzyfEaEQNpSkhnKtVAEKmyI4EoYomdGE44zxS1lCglkbc6p0lAhQ3AfXHfeZTsrjc5N1QRVyGVwpQpr6ZWTfyeVe5dzv5KcCEYIjYKLrSD4j9bUjVz4NlTxZokIxjDDmLFIXXZUHmIIwdjdhgzKTe5yk7vc5B7Z898n7cifoCMw7IBPV5j1_yY5Hb8-fyu_AHf4jtc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433013366</pqid></control><display><type>article</type><title>Biomaterial and implant induced ossification: in vitro and in vivo findings</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Vallittu, Pekka K. ; Posti, Jussi P. ; Piitulainen, Jaakko M. ; Serlo, Willy ; Määttä, Jorma A. ; Heino, Terhi J. ; Pagliari, Stefania ; Syrjänen, Stina M. ; Forte, Giancarlo</creator><creatorcontrib>Vallittu, Pekka K. ; Posti, Jussi P. ; Piitulainen, Jaakko M. ; Serlo, Willy ; Määttä, Jorma A. ; Heino, Terhi J. ; Pagliari, Stefania ; Syrjänen, Stina M. ; Forte, Giancarlo</creatorcontrib><description>Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from the perspective of material‐induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly‐formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC‐BG, we cultured human adipose tissue‐derived mesenchymal stromal cells (AD‐MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2O3 control. AD‐MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro‐osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC‐BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC‐BG implant demonstrated material‐induced ossification both in vitro and in vivo.</description><identifier>ISSN: 1932-6254</identifier><identifier>EISSN: 1932-7005</identifier><identifier>DOI: 10.1002/term.3056</identifier><identifier>PMID: 32415757</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Adipose tissue ; Aluminum oxide ; bioactive glass ; bioactivity ; Biocompatible Materials - administration &amp; dosage ; Bioglass ; Biomaterials ; biomaterial‐induced ossification ; Biomedical materials ; Blood vessels ; Bone matrix ; Bone morphogenetic protein 2 ; Bone morphogenetic protein 3 ; Bone morphogenetic protein 4 ; Capillaries ; Clinical Case Studies ; Clinical Case Study ; Collagen ; Connective tissue ; Connective tissues ; cranial implant ; Defects ; Differentiation (biology) ; Extracellular matrix ; fiber‐reinforced composite ; Humans ; Male ; Mesenchyme ; Middle Aged ; Ossification ; Osteocytes ; osteogenesis ; Osteogenesis - drug effects ; Prostheses and Implants ; Regenerative medicine ; Skull - injuries ; Skull - metabolism ; Stromal cells ; Surgical implants ; Tissue engineering ; Vascularization</subject><ispartof>Journal of tissue engineering and regenerative medicine, 2020-08, Vol.14 (8), p.1157-1168</ispartof><rights>2020 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-9f7b57cb4992df541e57d9a40a3e497a9e4dbed4731a7f56a292ffc75ad0a2e43</citedby><cites>FETCH-LOGICAL-c4766-9f7b57cb4992df541e57d9a40a3e497a9e4dbed4731a7f56a292ffc75ad0a2e43</cites><orcidid>0000-0002-9981-6717 ; 0000-0001-9788-8904 ; 0000-0003-2414-1468 ; 0000-0001-8752-6862 ; 0000-0002-1341-1023 ; 0000-0002-5925-5193 ; 0000-0003-0738-5698 ; 0000-0003-2274-6834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fterm.3056$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fterm.3056$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32415757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallittu, Pekka K.</creatorcontrib><creatorcontrib>Posti, Jussi P.</creatorcontrib><creatorcontrib>Piitulainen, Jaakko M.</creatorcontrib><creatorcontrib>Serlo, Willy</creatorcontrib><creatorcontrib>Määttä, Jorma A.</creatorcontrib><creatorcontrib>Heino, Terhi J.</creatorcontrib><creatorcontrib>Pagliari, Stefania</creatorcontrib><creatorcontrib>Syrjänen, Stina M.</creatorcontrib><creatorcontrib>Forte, Giancarlo</creatorcontrib><title>Biomaterial and implant induced ossification: in vitro and in vivo findings</title><title>Journal of tissue engineering and regenerative medicine</title><addtitle>J Tissue Eng Regen Med</addtitle><description>Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from the perspective of material‐induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly‐formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC‐BG, we cultured human adipose tissue‐derived mesenchymal stromal cells (AD‐MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2O3 control. AD‐MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro‐osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC‐BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC‐BG implant demonstrated material‐induced ossification both in vitro and in vivo.</description><subject>Adipose tissue</subject><subject>Aluminum oxide</subject><subject>bioactive glass</subject><subject>bioactivity</subject><subject>Biocompatible Materials - administration &amp; dosage</subject><subject>Bioglass</subject><subject>Biomaterials</subject><subject>biomaterial‐induced ossification</subject><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>Bone matrix</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone morphogenetic protein 3</subject><subject>Bone morphogenetic protein 4</subject><subject>Capillaries</subject><subject>Clinical Case Studies</subject><subject>Clinical Case Study</subject><subject>Collagen</subject><subject>Connective tissue</subject><subject>Connective tissues</subject><subject>cranial implant</subject><subject>Defects</subject><subject>Differentiation (biology)</subject><subject>Extracellular matrix</subject><subject>fiber‐reinforced composite</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchyme</subject><subject>Middle Aged</subject><subject>Ossification</subject><subject>Osteocytes</subject><subject>osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Prostheses and Implants</subject><subject>Regenerative medicine</subject><subject>Skull - injuries</subject><subject>Skull - metabolism</subject><subject>Stromal cells</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Vascularization</subject><issn>1932-6254</issn><issn>1932-7005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMoVqsH_4AsePKwbTafxIOgpX5gRZB6DukmqSm7m5rdrfTfm7q16MFTJjMPzwwvAGcZHGQQomFjQjnAkLI9cJQJjFIOId3f1gxR0gPHdb2ITcooPgQ9jEhGOeVH4OnW-VJFgVNFoiqduHJZqKpJXKXb3OjE17WzLleN89VV7CYr1wTfoZvPyic2sq6a1yfgwKqiNqfbtw_e7sbT0UM6ebl_HN1M0pxwxlJh-YzyfEaEQNpSkhnKtVAEKmyI4EoYomdGE44zxS1lCglkbc6p0lAhQ3AfXHfeZTsrjc5N1QRVyGVwpQpr6ZWTfyeVe5dzv5KcCEYIjYKLrSD4j9bUjVz4NlTxZokIxjDDmLFIXXZUHmIIwdjdhgzKTe5yk7vc5B7Z898n7cifoCMw7IBPV5j1_yY5Hb8-fyu_AHf4jtc</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Vallittu, Pekka K.</creator><creator>Posti, Jussi P.</creator><creator>Piitulainen, Jaakko M.</creator><creator>Serlo, Willy</creator><creator>Määttä, Jorma A.</creator><creator>Heino, Terhi J.</creator><creator>Pagliari, Stefania</creator><creator>Syrjänen, Stina M.</creator><creator>Forte, Giancarlo</creator><general>Hindawi Limited</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9981-6717</orcidid><orcidid>https://orcid.org/0000-0001-9788-8904</orcidid><orcidid>https://orcid.org/0000-0003-2414-1468</orcidid><orcidid>https://orcid.org/0000-0001-8752-6862</orcidid><orcidid>https://orcid.org/0000-0002-1341-1023</orcidid><orcidid>https://orcid.org/0000-0002-5925-5193</orcidid><orcidid>https://orcid.org/0000-0003-0738-5698</orcidid><orcidid>https://orcid.org/0000-0003-2274-6834</orcidid></search><sort><creationdate>202008</creationdate><title>Biomaterial and implant induced ossification: in vitro and in vivo findings</title><author>Vallittu, Pekka K. ; Posti, Jussi P. ; Piitulainen, Jaakko M. ; Serlo, Willy ; Määttä, Jorma A. ; Heino, Terhi J. ; Pagliari, Stefania ; Syrjänen, Stina M. ; Forte, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-9f7b57cb4992df541e57d9a40a3e497a9e4dbed4731a7f56a292ffc75ad0a2e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipose tissue</topic><topic>Aluminum oxide</topic><topic>bioactive glass</topic><topic>bioactivity</topic><topic>Biocompatible Materials - administration &amp; dosage</topic><topic>Bioglass</topic><topic>Biomaterials</topic><topic>biomaterial‐induced ossification</topic><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>Bone matrix</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone morphogenetic protein 3</topic><topic>Bone morphogenetic protein 4</topic><topic>Capillaries</topic><topic>Clinical Case Studies</topic><topic>Clinical Case Study</topic><topic>Collagen</topic><topic>Connective tissue</topic><topic>Connective tissues</topic><topic>cranial implant</topic><topic>Defects</topic><topic>Differentiation (biology)</topic><topic>Extracellular matrix</topic><topic>fiber‐reinforced composite</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchyme</topic><topic>Middle Aged</topic><topic>Ossification</topic><topic>Osteocytes</topic><topic>osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Prostheses and Implants</topic><topic>Regenerative medicine</topic><topic>Skull - injuries</topic><topic>Skull - metabolism</topic><topic>Stromal cells</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallittu, Pekka K.</creatorcontrib><creatorcontrib>Posti, Jussi P.</creatorcontrib><creatorcontrib>Piitulainen, Jaakko M.</creatorcontrib><creatorcontrib>Serlo, Willy</creatorcontrib><creatorcontrib>Määttä, Jorma A.</creatorcontrib><creatorcontrib>Heino, Terhi J.</creatorcontrib><creatorcontrib>Pagliari, Stefania</creatorcontrib><creatorcontrib>Syrjänen, Stina M.</creatorcontrib><creatorcontrib>Forte, Giancarlo</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of tissue engineering and regenerative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallittu, Pekka K.</au><au>Posti, Jussi P.</au><au>Piitulainen, Jaakko M.</au><au>Serlo, Willy</au><au>Määttä, Jorma A.</au><au>Heino, Terhi J.</au><au>Pagliari, Stefania</au><au>Syrjänen, Stina M.</au><au>Forte, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterial and implant induced ossification: in vitro and in vivo findings</atitle><jtitle>Journal of tissue engineering and regenerative medicine</jtitle><addtitle>J Tissue Eng Regen Med</addtitle><date>2020-08</date><risdate>2020</risdate><volume>14</volume><issue>8</issue><spage>1157</spage><epage>1168</epage><pages>1157-1168</pages><issn>1932-6254</issn><eissn>1932-7005</eissn><abstract>Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from the perspective of material‐induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly‐formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC‐BG, we cultured human adipose tissue‐derived mesenchymal stromal cells (AD‐MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2O3 control. AD‐MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro‐osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC‐BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC‐BG implant demonstrated material‐induced ossification both in vitro and in vivo.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>32415757</pmid><doi>10.1002/term.3056</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9981-6717</orcidid><orcidid>https://orcid.org/0000-0001-9788-8904</orcidid><orcidid>https://orcid.org/0000-0003-2414-1468</orcidid><orcidid>https://orcid.org/0000-0001-8752-6862</orcidid><orcidid>https://orcid.org/0000-0002-1341-1023</orcidid><orcidid>https://orcid.org/0000-0002-5925-5193</orcidid><orcidid>https://orcid.org/0000-0003-0738-5698</orcidid><orcidid>https://orcid.org/0000-0003-2274-6834</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6254
ispartof Journal of tissue engineering and regenerative medicine, 2020-08, Vol.14 (8), p.1157-1168
issn 1932-6254
1932-7005
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496445
source MEDLINE; Wiley Online Library All Journals
subjects Adipose tissue
Aluminum oxide
bioactive glass
bioactivity
Biocompatible Materials - administration & dosage
Bioglass
Biomaterials
biomaterial‐induced ossification
Biomedical materials
Blood vessels
Bone matrix
Bone morphogenetic protein 2
Bone morphogenetic protein 3
Bone morphogenetic protein 4
Capillaries
Clinical Case Studies
Clinical Case Study
Collagen
Connective tissue
Connective tissues
cranial implant
Defects
Differentiation (biology)
Extracellular matrix
fiber‐reinforced composite
Humans
Male
Mesenchyme
Middle Aged
Ossification
Osteocytes
osteogenesis
Osteogenesis - drug effects
Prostheses and Implants
Regenerative medicine
Skull - injuries
Skull - metabolism
Stromal cells
Surgical implants
Tissue engineering
Vascularization
title Biomaterial and implant induced ossification: in vitro and in vivo findings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterial%20and%20implant%20induced%20ossification:%20in%20vitro%20and%20in%20vivo%20findings&rft.jtitle=Journal%20of%20tissue%20engineering%20and%20regenerative%20medicine&rft.au=Vallittu,%20Pekka%20K.&rft.date=2020-08&rft.volume=14&rft.issue=8&rft.spage=1157&rft.epage=1168&rft.pages=1157-1168&rft.issn=1932-6254&rft.eissn=1932-7005&rft_id=info:doi/10.1002/term.3056&rft_dat=%3Cproquest_pubme%3E2433013366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433013366&rft_id=info:pmid/32415757&rfr_iscdi=true