Biomaterial and implant induced ossification: in vitro and in vivo findings
Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from t...
Gespeichert in:
Veröffentlicht in: | Journal of tissue engineering and regenerative medicine 2020-08, Vol.14 (8), p.1157-1168 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1168 |
---|---|
container_issue | 8 |
container_start_page | 1157 |
container_title | Journal of tissue engineering and regenerative medicine |
container_volume | 14 |
creator | Vallittu, Pekka K. Posti, Jussi P. Piitulainen, Jaakko M. Serlo, Willy Määttä, Jorma A. Heino, Terhi J. Pagliari, Stefania Syrjänen, Stina M. Forte, Giancarlo |
description | Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from the perspective of material‐induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly‐formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC‐BG, we cultured human adipose tissue‐derived mesenchymal stromal cells (AD‐MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2O3 control. AD‐MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro‐osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC‐BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC‐BG implant demonstrated material‐induced ossification both in vitro and in vivo. |
doi_str_mv | 10.1002/term.3056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433013366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-9f7b57cb4992df541e57d9a40a3e497a9e4dbed4731a7f56a292ffc75ad0a2e43</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoVqsH_4AsePKwbTafxIOgpX5gRZB6DukmqSm7m5rdrfTfm7q16MFTJjMPzwwvAGcZHGQQomFjQjnAkLI9cJQJjFIOId3f1gxR0gPHdb2ITcooPgQ9jEhGOeVH4OnW-VJFgVNFoiqduHJZqKpJXKXb3OjE17WzLleN89VV7CYr1wTfoZvPyic2sq6a1yfgwKqiNqfbtw_e7sbT0UM6ebl_HN1M0pxwxlJh-YzyfEaEQNpSkhnKtVAEKmyI4EoYomdGE44zxS1lCglkbc6p0lAhQ3AfXHfeZTsrjc5N1QRVyGVwpQpr6ZWTfyeVe5dzv5KcCEYIjYKLrSD4j9bUjVz4NlTxZokIxjDDmLFIXXZUHmIIwdjdhgzKTe5yk7vc5B7Z898n7cifoCMw7IBPV5j1_yY5Hb8-fyu_AHf4jtc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433013366</pqid></control><display><type>article</type><title>Biomaterial and implant induced ossification: in vitro and in vivo findings</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Vallittu, Pekka K. ; Posti, Jussi P. ; Piitulainen, Jaakko M. ; Serlo, Willy ; Määttä, Jorma A. ; Heino, Terhi J. ; Pagliari, Stefania ; Syrjänen, Stina M. ; Forte, Giancarlo</creator><creatorcontrib>Vallittu, Pekka K. ; Posti, Jussi P. ; Piitulainen, Jaakko M. ; Serlo, Willy ; Määttä, Jorma A. ; Heino, Terhi J. ; Pagliari, Stefania ; Syrjänen, Stina M. ; Forte, Giancarlo</creatorcontrib><description>Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from the perspective of material‐induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly‐formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC‐BG, we cultured human adipose tissue‐derived mesenchymal stromal cells (AD‐MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2O3 control. AD‐MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro‐osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC‐BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC‐BG implant demonstrated material‐induced ossification both in vitro and in vivo.</description><identifier>ISSN: 1932-6254</identifier><identifier>EISSN: 1932-7005</identifier><identifier>DOI: 10.1002/term.3056</identifier><identifier>PMID: 32415757</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Adipose tissue ; Aluminum oxide ; bioactive glass ; bioactivity ; Biocompatible Materials - administration & dosage ; Bioglass ; Biomaterials ; biomaterial‐induced ossification ; Biomedical materials ; Blood vessels ; Bone matrix ; Bone morphogenetic protein 2 ; Bone morphogenetic protein 3 ; Bone morphogenetic protein 4 ; Capillaries ; Clinical Case Studies ; Clinical Case Study ; Collagen ; Connective tissue ; Connective tissues ; cranial implant ; Defects ; Differentiation (biology) ; Extracellular matrix ; fiber‐reinforced composite ; Humans ; Male ; Mesenchyme ; Middle Aged ; Ossification ; Osteocytes ; osteogenesis ; Osteogenesis - drug effects ; Prostheses and Implants ; Regenerative medicine ; Skull - injuries ; Skull - metabolism ; Stromal cells ; Surgical implants ; Tissue engineering ; Vascularization</subject><ispartof>Journal of tissue engineering and regenerative medicine, 2020-08, Vol.14 (8), p.1157-1168</ispartof><rights>2020 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons Ltd</rights><rights>2020 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-9f7b57cb4992df541e57d9a40a3e497a9e4dbed4731a7f56a292ffc75ad0a2e43</citedby><cites>FETCH-LOGICAL-c4766-9f7b57cb4992df541e57d9a40a3e497a9e4dbed4731a7f56a292ffc75ad0a2e43</cites><orcidid>0000-0002-9981-6717 ; 0000-0001-9788-8904 ; 0000-0003-2414-1468 ; 0000-0001-8752-6862 ; 0000-0002-1341-1023 ; 0000-0002-5925-5193 ; 0000-0003-0738-5698 ; 0000-0003-2274-6834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fterm.3056$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fterm.3056$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32415757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallittu, Pekka K.</creatorcontrib><creatorcontrib>Posti, Jussi P.</creatorcontrib><creatorcontrib>Piitulainen, Jaakko M.</creatorcontrib><creatorcontrib>Serlo, Willy</creatorcontrib><creatorcontrib>Määttä, Jorma A.</creatorcontrib><creatorcontrib>Heino, Terhi J.</creatorcontrib><creatorcontrib>Pagliari, Stefania</creatorcontrib><creatorcontrib>Syrjänen, Stina M.</creatorcontrib><creatorcontrib>Forte, Giancarlo</creatorcontrib><title>Biomaterial and implant induced ossification: in vitro and in vivo findings</title><title>Journal of tissue engineering and regenerative medicine</title><addtitle>J Tissue Eng Regen Med</addtitle><description>Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from the perspective of material‐induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly‐formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC‐BG, we cultured human adipose tissue‐derived mesenchymal stromal cells (AD‐MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2O3 control. AD‐MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro‐osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC‐BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC‐BG implant demonstrated material‐induced ossification both in vitro and in vivo.</description><subject>Adipose tissue</subject><subject>Aluminum oxide</subject><subject>bioactive glass</subject><subject>bioactivity</subject><subject>Biocompatible Materials - administration & dosage</subject><subject>Bioglass</subject><subject>Biomaterials</subject><subject>biomaterial‐induced ossification</subject><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>Bone matrix</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone morphogenetic protein 3</subject><subject>Bone morphogenetic protein 4</subject><subject>Capillaries</subject><subject>Clinical Case Studies</subject><subject>Clinical Case Study</subject><subject>Collagen</subject><subject>Connective tissue</subject><subject>Connective tissues</subject><subject>cranial implant</subject><subject>Defects</subject><subject>Differentiation (biology)</subject><subject>Extracellular matrix</subject><subject>fiber‐reinforced composite</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchyme</subject><subject>Middle Aged</subject><subject>Ossification</subject><subject>Osteocytes</subject><subject>osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Prostheses and Implants</subject><subject>Regenerative medicine</subject><subject>Skull - injuries</subject><subject>Skull - metabolism</subject><subject>Stromal cells</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Vascularization</subject><issn>1932-6254</issn><issn>1932-7005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMoVqsH_4AsePKwbTafxIOgpX5gRZB6DukmqSm7m5rdrfTfm7q16MFTJjMPzwwvAGcZHGQQomFjQjnAkLI9cJQJjFIOId3f1gxR0gPHdb2ITcooPgQ9jEhGOeVH4OnW-VJFgVNFoiqduHJZqKpJXKXb3OjE17WzLleN89VV7CYr1wTfoZvPyic2sq6a1yfgwKqiNqfbtw_e7sbT0UM6ebl_HN1M0pxwxlJh-YzyfEaEQNpSkhnKtVAEKmyI4EoYomdGE44zxS1lCglkbc6p0lAhQ3AfXHfeZTsrjc5N1QRVyGVwpQpr6ZWTfyeVe5dzv5KcCEYIjYKLrSD4j9bUjVz4NlTxZokIxjDDmLFIXXZUHmIIwdjdhgzKTe5yk7vc5B7Z898n7cifoCMw7IBPV5j1_yY5Hb8-fyu_AHf4jtc</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Vallittu, Pekka K.</creator><creator>Posti, Jussi P.</creator><creator>Piitulainen, Jaakko M.</creator><creator>Serlo, Willy</creator><creator>Määttä, Jorma A.</creator><creator>Heino, Terhi J.</creator><creator>Pagliari, Stefania</creator><creator>Syrjänen, Stina M.</creator><creator>Forte, Giancarlo</creator><general>Hindawi Limited</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9981-6717</orcidid><orcidid>https://orcid.org/0000-0001-9788-8904</orcidid><orcidid>https://orcid.org/0000-0003-2414-1468</orcidid><orcidid>https://orcid.org/0000-0001-8752-6862</orcidid><orcidid>https://orcid.org/0000-0002-1341-1023</orcidid><orcidid>https://orcid.org/0000-0002-5925-5193</orcidid><orcidid>https://orcid.org/0000-0003-0738-5698</orcidid><orcidid>https://orcid.org/0000-0003-2274-6834</orcidid></search><sort><creationdate>202008</creationdate><title>Biomaterial and implant induced ossification: in vitro and in vivo findings</title><author>Vallittu, Pekka K. ; Posti, Jussi P. ; Piitulainen, Jaakko M. ; Serlo, Willy ; Määttä, Jorma A. ; Heino, Terhi J. ; Pagliari, Stefania ; Syrjänen, Stina M. ; Forte, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-9f7b57cb4992df541e57d9a40a3e497a9e4dbed4731a7f56a292ffc75ad0a2e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipose tissue</topic><topic>Aluminum oxide</topic><topic>bioactive glass</topic><topic>bioactivity</topic><topic>Biocompatible Materials - administration & dosage</topic><topic>Bioglass</topic><topic>Biomaterials</topic><topic>biomaterial‐induced ossification</topic><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>Bone matrix</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone morphogenetic protein 3</topic><topic>Bone morphogenetic protein 4</topic><topic>Capillaries</topic><topic>Clinical Case Studies</topic><topic>Clinical Case Study</topic><topic>Collagen</topic><topic>Connective tissue</topic><topic>Connective tissues</topic><topic>cranial implant</topic><topic>Defects</topic><topic>Differentiation (biology)</topic><topic>Extracellular matrix</topic><topic>fiber‐reinforced composite</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchyme</topic><topic>Middle Aged</topic><topic>Ossification</topic><topic>Osteocytes</topic><topic>osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Prostheses and Implants</topic><topic>Regenerative medicine</topic><topic>Skull - injuries</topic><topic>Skull - metabolism</topic><topic>Stromal cells</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallittu, Pekka K.</creatorcontrib><creatorcontrib>Posti, Jussi P.</creatorcontrib><creatorcontrib>Piitulainen, Jaakko M.</creatorcontrib><creatorcontrib>Serlo, Willy</creatorcontrib><creatorcontrib>Määttä, Jorma A.</creatorcontrib><creatorcontrib>Heino, Terhi J.</creatorcontrib><creatorcontrib>Pagliari, Stefania</creatorcontrib><creatorcontrib>Syrjänen, Stina M.</creatorcontrib><creatorcontrib>Forte, Giancarlo</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of tissue engineering and regenerative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallittu, Pekka K.</au><au>Posti, Jussi P.</au><au>Piitulainen, Jaakko M.</au><au>Serlo, Willy</au><au>Määttä, Jorma A.</au><au>Heino, Terhi J.</au><au>Pagliari, Stefania</au><au>Syrjänen, Stina M.</au><au>Forte, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomaterial and implant induced ossification: in vitro and in vivo findings</atitle><jtitle>Journal of tissue engineering and regenerative medicine</jtitle><addtitle>J Tissue Eng Regen Med</addtitle><date>2020-08</date><risdate>2020</risdate><volume>14</volume><issue>8</issue><spage>1157</spage><epage>1168</epage><pages>1157-1168</pages><issn>1932-6254</issn><eissn>1932-7005</eissn><abstract>Material‐induced ossification is suggested as a suitable approach to heal large bone defects. Fiber‐reinforced composite–bioactive glasses (FRC‐BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC‐BG implant in vivo from the perspective of material‐induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly‐formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC‐BG, we cultured human adipose tissue‐derived mesenchymal stromal cells (AD‐MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2O3 control. AD‐MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro‐osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC‐BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC‐BG implant demonstrated material‐induced ossification both in vitro and in vivo.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>32415757</pmid><doi>10.1002/term.3056</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9981-6717</orcidid><orcidid>https://orcid.org/0000-0001-9788-8904</orcidid><orcidid>https://orcid.org/0000-0003-2414-1468</orcidid><orcidid>https://orcid.org/0000-0001-8752-6862</orcidid><orcidid>https://orcid.org/0000-0002-1341-1023</orcidid><orcidid>https://orcid.org/0000-0002-5925-5193</orcidid><orcidid>https://orcid.org/0000-0003-0738-5698</orcidid><orcidid>https://orcid.org/0000-0003-2274-6834</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6254 |
ispartof | Journal of tissue engineering and regenerative medicine, 2020-08, Vol.14 (8), p.1157-1168 |
issn | 1932-6254 1932-7005 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7496445 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Adipose tissue Aluminum oxide bioactive glass bioactivity Biocompatible Materials - administration & dosage Bioglass Biomaterials biomaterial‐induced ossification Biomedical materials Blood vessels Bone matrix Bone morphogenetic protein 2 Bone morphogenetic protein 3 Bone morphogenetic protein 4 Capillaries Clinical Case Studies Clinical Case Study Collagen Connective tissue Connective tissues cranial implant Defects Differentiation (biology) Extracellular matrix fiber‐reinforced composite Humans Male Mesenchyme Middle Aged Ossification Osteocytes osteogenesis Osteogenesis - drug effects Prostheses and Implants Regenerative medicine Skull - injuries Skull - metabolism Stromal cells Surgical implants Tissue engineering Vascularization |
title | Biomaterial and implant induced ossification: in vitro and in vivo findings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomaterial%20and%20implant%20induced%20ossification:%20in%20vitro%20and%20in%20vivo%20findings&rft.jtitle=Journal%20of%20tissue%20engineering%20and%20regenerative%20medicine&rft.au=Vallittu,%20Pekka%20K.&rft.date=2020-08&rft.volume=14&rft.issue=8&rft.spage=1157&rft.epage=1168&rft.pages=1157-1168&rft.issn=1932-6254&rft.eissn=1932-7005&rft_id=info:doi/10.1002/term.3056&rft_dat=%3Cproquest_pubme%3E2433013366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433013366&rft_id=info:pmid/32415757&rfr_iscdi=true |