Fatty change of the liver microenvironment influences the metastatic potential of colorectal cancer

Summary Fatty liver is the most common cause of liver disease, and its prevalence has been increasing globally. Colorectal cancer (CRC) accounts for approximately 10% of all cancers and metastasizes most commonly to the liver. Paget's ‘Seed and Soil’ theory of metastasis proposed that the secon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of experimental pathology 2020-10, Vol.101 (5), p.162-170
Hauptverfasser: Masaki, Satoshi, Hashimoto, Yoshimi, Kunisho, Shoma, Kimoto, Akiko, Kitadai, Yasuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 5
container_start_page 162
container_title International journal of experimental pathology
container_volume 101
creator Masaki, Satoshi
Hashimoto, Yoshimi
Kunisho, Shoma
Kimoto, Akiko
Kitadai, Yasuhiko
description Summary Fatty liver is the most common cause of liver disease, and its prevalence has been increasing globally. Colorectal cancer (CRC) accounts for approximately 10% of all cancers and metastasizes most commonly to the liver. Paget's ‘Seed and Soil’ theory of metastasis proposed that the secondary growth of cancer cells is dependent on the distal organ microenvironment. This implies that the risk of metastasis may change due to changes in the microenvironment of target organs. However, the association between steatosis, fatty change in the liver microenvironment, and liver metastasis has not been clarified. Here, we induced fatty liver conditions in BALB/c mice using a choline‐deficient high‐fat diet with 0.1% methionine (CDAHFD) and then injected the CT26 cells to produce experimental metastasis. The number of metastatic tumours was significantly increased in mice with severe fatty liver as compared to control mice. The average size of metastatic tumours was smaller in mice with moderate fatty liver than in control mice. The stromal components, including cancer‐associated fibroblasts, tumour‐associated macrophages and tumour‐infiltrating lymphocytes, were also examined. Metastatic tumours in fatty liver showed invasive growth patterns without a fibrotic capsule. Compared to control groups, the polarization of macrophages and subtypes of tumour‐infiltrating lymphocytes differed depending on the extent of fatty liver progression. These results indicated that fatty changes in the liver influenced liver metastasis of CRC. Although moderate fatty changes suppress the growth of metastatic tumours in the liver, a severe fatty microenvironment may promote invasion and metastasis through alteration of the tumour microenvironment (TME).
doi_str_mv 10.1111/iep.12371
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443373213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5091-fdd297cad81fff8a41342b6213671e3a9814cfee8ef57766507290bc77a3441c3</originalsourceid><addsrcrecordid>eNp1kU9PwjAYhxujEUQPfgGzxJOHQf9s63YxMQSUhEQPem5KeQsl24pdwfDtLQyJHuylafrk6a_vD6FbgvskrIGBdZ9QxskZ6hKWpTHNCDtHXVykRVxknHXQVdOsMCaMEn6JOozynDFMu0iNpfe7SC1lvYDI6sgvISrNFlxUGeUs1FvjbF1B7SNT63IDtYLmQFXgZeOlNypaWx8AI8u9QdnSOlA-nJQMtLtGF1qWDdwc9x76GI_ehy_x9PV5MnyaxirFBYn1fE4LruQ8J1rrXCaEJXSW0fAjToDJIieJ0gA56JTzLEsxpwWeKc4lSxKiWA89tt71ZlbBXIVITpZi7Uwl3U5YacTfm9osxcJuBU-KlKc4CO6PAmc_N9B4sbIbV4fMgiYJYzyMjwXqoaXCeJrGgT69QLDY9yFCH-LQR2Dvfkc6kT8FBGDQAl-mhN3_JjEZvbXKbzL7lsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443373213</pqid></control><display><type>article</type><title>Fatty change of the liver microenvironment influences the metastatic potential of colorectal cancer</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Masaki, Satoshi ; Hashimoto, Yoshimi ; Kunisho, Shoma ; Kimoto, Akiko ; Kitadai, Yasuhiko</creator><creatorcontrib>Masaki, Satoshi ; Hashimoto, Yoshimi ; Kunisho, Shoma ; Kimoto, Akiko ; Kitadai, Yasuhiko</creatorcontrib><description>Summary Fatty liver is the most common cause of liver disease, and its prevalence has been increasing globally. Colorectal cancer (CRC) accounts for approximately 10% of all cancers and metastasizes most commonly to the liver. Paget's ‘Seed and Soil’ theory of metastasis proposed that the secondary growth of cancer cells is dependent on the distal organ microenvironment. This implies that the risk of metastasis may change due to changes in the microenvironment of target organs. However, the association between steatosis, fatty change in the liver microenvironment, and liver metastasis has not been clarified. Here, we induced fatty liver conditions in BALB/c mice using a choline‐deficient high‐fat diet with 0.1% methionine (CDAHFD) and then injected the CT26 cells to produce experimental metastasis. The number of metastatic tumours was significantly increased in mice with severe fatty liver as compared to control mice. The average size of metastatic tumours was smaller in mice with moderate fatty liver than in control mice. The stromal components, including cancer‐associated fibroblasts, tumour‐associated macrophages and tumour‐infiltrating lymphocytes, were also examined. Metastatic tumours in fatty liver showed invasive growth patterns without a fibrotic capsule. Compared to control groups, the polarization of macrophages and subtypes of tumour‐infiltrating lymphocytes differed depending on the extent of fatty liver progression. These results indicated that fatty changes in the liver influenced liver metastasis of CRC. Although moderate fatty changes suppress the growth of metastatic tumours in the liver, a severe fatty microenvironment may promote invasion and metastasis through alteration of the tumour microenvironment (TME).</description><identifier>ISSN: 0959-9673</identifier><identifier>EISSN: 1365-2613</identifier><identifier>DOI: 10.1111/iep.12371</identifier><identifier>PMID: 32783302</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Cancer ; Cell Line, Tumor ; Choline ; Choline Deficiency ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - metabolism ; Colorectal Neoplasms - pathology ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; Fatty liver ; Fatty Liver - chemically induced ; Fatty Liver - metabolism ; Female ; Fibroblasts ; Fibrosis ; Growth patterns ; High fat diet ; Humans ; Immunohistochemistry ; Invasiveness ; Liver ; Liver - metabolism ; Liver - pathology ; Liver cancer ; Liver diseases ; Liver Neoplasms - metabolism ; Liver Neoplasms - secondary ; Lymphocytes ; Macrophages ; Macrophages - pathology ; Metastases ; Metastasis ; Methionine ; Mice ; Mice, Inbred BALB C ; Nutrient deficiency ; organ microenvironment ; Organs ; Original ; Steatosis ; Tumor Microenvironment ; Tumors</subject><ispartof>International journal of experimental pathology, 2020-10, Vol.101 (5), p.162-170</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Company of the International Journal of Experimental Pathology (CIJEP)</rights><rights>2020 The Authors. International Journal of Experimental Pathology published by John Wiley &amp; Sons Ltd on behalf of Company of the International Journal of Experimental Pathology (CIJEP).</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5091-fdd297cad81fff8a41342b6213671e3a9814cfee8ef57766507290bc77a3441c3</citedby><cites>FETCH-LOGICAL-c5091-fdd297cad81fff8a41342b6213671e3a9814cfee8ef57766507290bc77a3441c3</cites><orcidid>0000-0002-8743-3815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32783302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masaki, Satoshi</creatorcontrib><creatorcontrib>Hashimoto, Yoshimi</creatorcontrib><creatorcontrib>Kunisho, Shoma</creatorcontrib><creatorcontrib>Kimoto, Akiko</creatorcontrib><creatorcontrib>Kitadai, Yasuhiko</creatorcontrib><title>Fatty change of the liver microenvironment influences the metastatic potential of colorectal cancer</title><title>International journal of experimental pathology</title><addtitle>Int J Exp Pathol</addtitle><description>Summary Fatty liver is the most common cause of liver disease, and its prevalence has been increasing globally. Colorectal cancer (CRC) accounts for approximately 10% of all cancers and metastasizes most commonly to the liver. Paget's ‘Seed and Soil’ theory of metastasis proposed that the secondary growth of cancer cells is dependent on the distal organ microenvironment. This implies that the risk of metastasis may change due to changes in the microenvironment of target organs. However, the association between steatosis, fatty change in the liver microenvironment, and liver metastasis has not been clarified. Here, we induced fatty liver conditions in BALB/c mice using a choline‐deficient high‐fat diet with 0.1% methionine (CDAHFD) and then injected the CT26 cells to produce experimental metastasis. The number of metastatic tumours was significantly increased in mice with severe fatty liver as compared to control mice. The average size of metastatic tumours was smaller in mice with moderate fatty liver than in control mice. The stromal components, including cancer‐associated fibroblasts, tumour‐associated macrophages and tumour‐infiltrating lymphocytes, were also examined. Metastatic tumours in fatty liver showed invasive growth patterns without a fibrotic capsule. Compared to control groups, the polarization of macrophages and subtypes of tumour‐infiltrating lymphocytes differed depending on the extent of fatty liver progression. These results indicated that fatty changes in the liver influenced liver metastasis of CRC. Although moderate fatty changes suppress the growth of metastatic tumours in the liver, a severe fatty microenvironment may promote invasion and metastasis through alteration of the tumour microenvironment (TME).</description><subject>Animals</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Choline</subject><subject>Choline Deficiency</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Fatty liver</subject><subject>Fatty Liver - chemically induced</subject><subject>Fatty Liver - metabolism</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibrosis</subject><subject>Growth patterns</subject><subject>High fat diet</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Invasiveness</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver cancer</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - metabolism</subject><subject>Liver Neoplasms - secondary</subject><subject>Lymphocytes</subject><subject>Macrophages</subject><subject>Macrophages - pathology</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Methionine</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Nutrient deficiency</subject><subject>organ microenvironment</subject><subject>Organs</subject><subject>Original</subject><subject>Steatosis</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><issn>0959-9673</issn><issn>1365-2613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU9PwjAYhxujEUQPfgGzxJOHQf9s63YxMQSUhEQPem5KeQsl24pdwfDtLQyJHuylafrk6a_vD6FbgvskrIGBdZ9QxskZ6hKWpTHNCDtHXVykRVxknHXQVdOsMCaMEn6JOozynDFMu0iNpfe7SC1lvYDI6sgvISrNFlxUGeUs1FvjbF1B7SNT63IDtYLmQFXgZeOlNypaWx8AI8u9QdnSOlA-nJQMtLtGF1qWDdwc9x76GI_ehy_x9PV5MnyaxirFBYn1fE4LruQ8J1rrXCaEJXSW0fAjToDJIieJ0gA56JTzLEsxpwWeKc4lSxKiWA89tt71ZlbBXIVITpZi7Uwl3U5YacTfm9osxcJuBU-KlKc4CO6PAmc_N9B4sbIbV4fMgiYJYzyMjwXqoaXCeJrGgT69QLDY9yFCH-LQR2Dvfkc6kT8FBGDQAl-mhN3_JjEZvbXKbzL7lsM</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Masaki, Satoshi</creator><creator>Hashimoto, Yoshimi</creator><creator>Kunisho, Shoma</creator><creator>Kimoto, Akiko</creator><creator>Kitadai, Yasuhiko</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8743-3815</orcidid></search><sort><creationdate>202010</creationdate><title>Fatty change of the liver microenvironment influences the metastatic potential of colorectal cancer</title><author>Masaki, Satoshi ; Hashimoto, Yoshimi ; Kunisho, Shoma ; Kimoto, Akiko ; Kitadai, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5091-fdd297cad81fff8a41342b6213671e3a9814cfee8ef57766507290bc77a3441c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Choline</topic><topic>Choline Deficiency</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Fatty liver</topic><topic>Fatty Liver - chemically induced</topic><topic>Fatty Liver - metabolism</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibrosis</topic><topic>Growth patterns</topic><topic>High fat diet</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Invasiveness</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver cancer</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - metabolism</topic><topic>Liver Neoplasms - secondary</topic><topic>Lymphocytes</topic><topic>Macrophages</topic><topic>Macrophages - pathology</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Methionine</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Nutrient deficiency</topic><topic>organ microenvironment</topic><topic>Organs</topic><topic>Original</topic><topic>Steatosis</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masaki, Satoshi</creatorcontrib><creatorcontrib>Hashimoto, Yoshimi</creatorcontrib><creatorcontrib>Kunisho, Shoma</creatorcontrib><creatorcontrib>Kimoto, Akiko</creatorcontrib><creatorcontrib>Kitadai, Yasuhiko</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of experimental pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masaki, Satoshi</au><au>Hashimoto, Yoshimi</au><au>Kunisho, Shoma</au><au>Kimoto, Akiko</au><au>Kitadai, Yasuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatty change of the liver microenvironment influences the metastatic potential of colorectal cancer</atitle><jtitle>International journal of experimental pathology</jtitle><addtitle>Int J Exp Pathol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>101</volume><issue>5</issue><spage>162</spage><epage>170</epage><pages>162-170</pages><issn>0959-9673</issn><eissn>1365-2613</eissn><abstract>Summary Fatty liver is the most common cause of liver disease, and its prevalence has been increasing globally. Colorectal cancer (CRC) accounts for approximately 10% of all cancers and metastasizes most commonly to the liver. Paget's ‘Seed and Soil’ theory of metastasis proposed that the secondary growth of cancer cells is dependent on the distal organ microenvironment. This implies that the risk of metastasis may change due to changes in the microenvironment of target organs. However, the association between steatosis, fatty change in the liver microenvironment, and liver metastasis has not been clarified. Here, we induced fatty liver conditions in BALB/c mice using a choline‐deficient high‐fat diet with 0.1% methionine (CDAHFD) and then injected the CT26 cells to produce experimental metastasis. The number of metastatic tumours was significantly increased in mice with severe fatty liver as compared to control mice. The average size of metastatic tumours was smaller in mice with moderate fatty liver than in control mice. The stromal components, including cancer‐associated fibroblasts, tumour‐associated macrophages and tumour‐infiltrating lymphocytes, were also examined. Metastatic tumours in fatty liver showed invasive growth patterns without a fibrotic capsule. Compared to control groups, the polarization of macrophages and subtypes of tumour‐infiltrating lymphocytes differed depending on the extent of fatty liver progression. These results indicated that fatty changes in the liver influenced liver metastasis of CRC. Although moderate fatty changes suppress the growth of metastatic tumours in the liver, a severe fatty microenvironment may promote invasion and metastasis through alteration of the tumour microenvironment (TME).</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32783302</pmid><doi>10.1111/iep.12371</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8743-3815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-9673
ispartof International journal of experimental pathology, 2020-10, Vol.101 (5), p.162-170
issn 0959-9673
1365-2613
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495750
source MEDLINE; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Animals
Cancer
Cell Line, Tumor
Choline
Choline Deficiency
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - metabolism
Colorectal Neoplasms - pathology
Diet, High-Fat - adverse effects
Disease Models, Animal
Fatty liver
Fatty Liver - chemically induced
Fatty Liver - metabolism
Female
Fibroblasts
Fibrosis
Growth patterns
High fat diet
Humans
Immunohistochemistry
Invasiveness
Liver
Liver - metabolism
Liver - pathology
Liver cancer
Liver diseases
Liver Neoplasms - metabolism
Liver Neoplasms - secondary
Lymphocytes
Macrophages
Macrophages - pathology
Metastases
Metastasis
Methionine
Mice
Mice, Inbred BALB C
Nutrient deficiency
organ microenvironment
Organs
Original
Steatosis
Tumor Microenvironment
Tumors
title Fatty change of the liver microenvironment influences the metastatic potential of colorectal cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatty%20change%20of%20the%20liver%20microenvironment%20influences%20the%20metastatic%20potential%20of%20colorectal%20cancer&rft.jtitle=International%20journal%20of%20experimental%20pathology&rft.au=Masaki,%20Satoshi&rft.date=2020-10&rft.volume=101&rft.issue=5&rft.spage=162&rft.epage=170&rft.pages=162-170&rft.issn=0959-9673&rft.eissn=1365-2613&rft_id=info:doi/10.1111/iep.12371&rft_dat=%3Cproquest_pubme%3E2443373213%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443373213&rft_id=info:pmid/32783302&rfr_iscdi=true