Failure Modes and Survival of Anterior Crowns Supported by Narrow Implant Systems

The reduced hardware design of narrow implants increases the risk of fracture not only of the implant itself but also of the prosthetic constituents. Hence, the current study is aimed at estimating the probability of survival of anterior crowns supported by different narrow implant systems. Three di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Bonfante, Estevam A., Zahoui, Abbas, Coelho, Paulo G., Lopes, Adolfo C. O., de Araújo-Júnior, Everardo N. S., Bergamo, Edmara T. P., Benalcázar Jalkh, Ernesto B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2020
container_start_page 1
container_title BioMed research international
container_volume 2020
creator Bonfante, Estevam A.
Zahoui, Abbas
Coelho, Paulo G.
Lopes, Adolfo C. O.
de Araújo-Júnior, Everardo N. S.
Bergamo, Edmara T. P.
Benalcázar Jalkh, Ernesto B.
description The reduced hardware design of narrow implants increases the risk of fracture not only of the implant itself but also of the prosthetic constituents. Hence, the current study is aimed at estimating the probability of survival of anterior crowns supported by different narrow implant systems. Three different narrow implant systems of internal conical connections were evaluated (Ø3.5×10 mm): (i) Active (Nobel Biocare), (ii) Epikut (S.I.N. Implant System), and (iii) BLX (Straumann). Abutments were torqued to the implants, and standardized maxillary incisor crowns were cemented. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water through load application of 30 degrees off-axis lingually at the incisal edge of the crowns using a flat tungsten carbide indenter until fracture or suspension. The use level probability Weibull curves and reliability for completion of a mission of 100,000 cycles at 80 N and 120 N were calculated and plotted. Weibull modulus and characteristic strength were also calculated and plotted. Fractured samples were analyzed in a stereomicroscope. The beta (β) values were 1.6 (0.9-3.1) and 1.4 (0.9-2.2) for BLX and Active implants, respectively, and 0.5 (0.3-0.8) for the Epikut implant, indicating that failures were mainly associated with fatigue damage accumulation in the formers, but more likely associated with material strength in the latter. All narrow implant systems showed high probability of survival (≥95%, CI: 85-100%) at 80 and 120 N, without significant difference between them. Weibull modulus ranged from 6 to 14. The characteristic strength of Active, Epikut, and BLX was 271 (260-282) N, 216 (205-228) N, and 275 (264-285) N, respectively. The failure mode predominantly involved abutment and/or abutment screw fracture, whereas no narrow implant was fractured. Therefore, all narrow implant systems exhibited a high probability of survival for anterior physiologic masticatory forces, and failures were restricted to abutment and abutment screw.
doi_str_mv 10.1155/2020/1057846
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444280255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-e497fd693086b528c90bb4afa016097c4fe8eac274f3a893e6382170e281eb3e3</originalsourceid><addsrcrecordid>eNqNks9L5DAUx4O4qLjePC-BvQg6mt9NLwsyqCvoLqKeQ9q-rpG2qUk7Mv-9KTM7q3sylxfe-_Dlffk-hA4pOaVUyjNGGDmjRGZaqC20xzgVM0UF3d78Od9FBzE-k_Q0VSRXO2iXs1wJQtUeuru0rhkD4FtfQcS2q_D9GBZuYRvsa3zeDRCcD3ge_GsX06zvfRigwsUS_7IhdfF12ze2G_D9Mg7Qxq_oS22bCAfruo8eLy8e5j9nN7-vrufnN7NSZHSYgcizulI5J1oVkukyJ0UhbG3JtGRWiho02JJlouZW5xwU14xmBJimUHDg--jHSrcfixaqEroh2Mb0wbU2LI23znycdO7J_PELk4lcUsWSwNFaIPiXEeJgWhdLaJIZ8GM0TAgpGM_lhH7_D332Y-iSvYkSTBMmZaJOVlQZfIwB6s0ylJgpLjPFZdZxJfzbewMb-G84CTheAU-uq-yr-6QcJAZq-4-m6RJoxt8ApOCmAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444280255</pqid></control><display><type>article</type><title>Failure Modes and Survival of Anterior Crowns Supported by Narrow Implant Systems</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bonfante, Estevam A. ; Zahoui, Abbas ; Coelho, Paulo G. ; Lopes, Adolfo C. O. ; de Araújo-Júnior, Everardo N. S. ; Bergamo, Edmara T. P. ; Benalcázar Jalkh, Ernesto B.</creator><contributor>Lerner, Henriette ; Henriette Lerner</contributor><creatorcontrib>Bonfante, Estevam A. ; Zahoui, Abbas ; Coelho, Paulo G. ; Lopes, Adolfo C. O. ; de Araújo-Júnior, Everardo N. S. ; Bergamo, Edmara T. P. ; Benalcázar Jalkh, Ernesto B. ; Lerner, Henriette ; Henriette Lerner</creatorcontrib><description>The reduced hardware design of narrow implants increases the risk of fracture not only of the implant itself but also of the prosthetic constituents. Hence, the current study is aimed at estimating the probability of survival of anterior crowns supported by different narrow implant systems. Three different narrow implant systems of internal conical connections were evaluated (Ø3.5×10 mm): (i) Active (Nobel Biocare), (ii) Epikut (S.I.N. Implant System), and (iii) BLX (Straumann). Abutments were torqued to the implants, and standardized maxillary incisor crowns were cemented. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water through load application of 30 degrees off-axis lingually at the incisal edge of the crowns using a flat tungsten carbide indenter until fracture or suspension. The use level probability Weibull curves and reliability for completion of a mission of 100,000 cycles at 80 N and 120 N were calculated and plotted. Weibull modulus and characteristic strength were also calculated and plotted. Fractured samples were analyzed in a stereomicroscope. The beta (β) values were 1.6 (0.9-3.1) and 1.4 (0.9-2.2) for BLX and Active implants, respectively, and 0.5 (0.3-0.8) for the Epikut implant, indicating that failures were mainly associated with fatigue damage accumulation in the formers, but more likely associated with material strength in the latter. All narrow implant systems showed high probability of survival (≥95%, CI: 85-100%) at 80 and 120 N, without significant difference between them. Weibull modulus ranged from 6 to 14. The characteristic strength of Active, Epikut, and BLX was 271 (260-282) N, 216 (205-228) N, and 275 (264-285) N, respectively. The failure mode predominantly involved abutment and/or abutment screw fracture, whereas no narrow implant was fractured. Therefore, all narrow implant systems exhibited a high probability of survival for anterior physiologic masticatory forces, and failures were restricted to abutment and abutment screw.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2020/1057846</identifier><identifier>PMID: 32964016</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accelerated life tests ; Accelerated tests ; Biomechanics ; Crowns ; Damage accumulation ; Dental Abutments ; Dental Implant-Abutment Design - methods ; Dental prosthetics ; Dental Restoration Failure ; Dental Stress Analysis - methods ; Failure ; Failure modes ; Fatigue failure ; Fractures ; Humans ; Incisor - chemistry ; Mastication ; Materials Testing - methods ; Mathematical analysis ; Maxilla - chemistry ; Microscopy, Electron, Scanning - methods ; Parameter estimation ; Probability ; Prostheses ; Prostheses and Implants ; Reproducibility of Results ; Stress, Mechanical ; Surface Properties ; Surgical implants ; Survival ; Torque ; Transplants &amp; implants ; Tungsten ; Tungsten carbide ; Water - chemistry ; Weibull modulus</subject><ispartof>BioMed research international, 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Edmara T. P. Bergamo et al.</rights><rights>Copyright © 2020 Edmara T. P. Bergamo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Edmara T. P. Bergamo et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-e497fd693086b528c90bb4afa016097c4fe8eac274f3a893e6382170e281eb3e3</citedby><cites>FETCH-LOGICAL-c471t-e497fd693086b528c90bb4afa016097c4fe8eac274f3a893e6382170e281eb3e3</cites><orcidid>0000-0001-8347-6124 ; 0000-0001-6867-8350 ; 0000-0002-5006-2184 ; 0000-0002-7184-8485 ; 0000-0001-6916-1564 ; 0000-0002-5769-6913 ; 0000-0003-4528-4855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495162/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495162/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32964016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lerner, Henriette</contributor><contributor>Henriette Lerner</contributor><creatorcontrib>Bonfante, Estevam A.</creatorcontrib><creatorcontrib>Zahoui, Abbas</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>Lopes, Adolfo C. O.</creatorcontrib><creatorcontrib>de Araújo-Júnior, Everardo N. S.</creatorcontrib><creatorcontrib>Bergamo, Edmara T. P.</creatorcontrib><creatorcontrib>Benalcázar Jalkh, Ernesto B.</creatorcontrib><title>Failure Modes and Survival of Anterior Crowns Supported by Narrow Implant Systems</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The reduced hardware design of narrow implants increases the risk of fracture not only of the implant itself but also of the prosthetic constituents. Hence, the current study is aimed at estimating the probability of survival of anterior crowns supported by different narrow implant systems. Three different narrow implant systems of internal conical connections were evaluated (Ø3.5×10 mm): (i) Active (Nobel Biocare), (ii) Epikut (S.I.N. Implant System), and (iii) BLX (Straumann). Abutments were torqued to the implants, and standardized maxillary incisor crowns were cemented. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water through load application of 30 degrees off-axis lingually at the incisal edge of the crowns using a flat tungsten carbide indenter until fracture or suspension. The use level probability Weibull curves and reliability for completion of a mission of 100,000 cycles at 80 N and 120 N were calculated and plotted. Weibull modulus and characteristic strength were also calculated and plotted. Fractured samples were analyzed in a stereomicroscope. The beta (β) values were 1.6 (0.9-3.1) and 1.4 (0.9-2.2) for BLX and Active implants, respectively, and 0.5 (0.3-0.8) for the Epikut implant, indicating that failures were mainly associated with fatigue damage accumulation in the formers, but more likely associated with material strength in the latter. All narrow implant systems showed high probability of survival (≥95%, CI: 85-100%) at 80 and 120 N, without significant difference between them. Weibull modulus ranged from 6 to 14. The characteristic strength of Active, Epikut, and BLX was 271 (260-282) N, 216 (205-228) N, and 275 (264-285) N, respectively. The failure mode predominantly involved abutment and/or abutment screw fracture, whereas no narrow implant was fractured. Therefore, all narrow implant systems exhibited a high probability of survival for anterior physiologic masticatory forces, and failures were restricted to abutment and abutment screw.</description><subject>Accelerated life tests</subject><subject>Accelerated tests</subject><subject>Biomechanics</subject><subject>Crowns</subject><subject>Damage accumulation</subject><subject>Dental Abutments</subject><subject>Dental Implant-Abutment Design - methods</subject><subject>Dental prosthetics</subject><subject>Dental Restoration Failure</subject><subject>Dental Stress Analysis - methods</subject><subject>Failure</subject><subject>Failure modes</subject><subject>Fatigue failure</subject><subject>Fractures</subject><subject>Humans</subject><subject>Incisor - chemistry</subject><subject>Mastication</subject><subject>Materials Testing - methods</subject><subject>Mathematical analysis</subject><subject>Maxilla - chemistry</subject><subject>Microscopy, Electron, Scanning - methods</subject><subject>Parameter estimation</subject><subject>Probability</subject><subject>Prostheses</subject><subject>Prostheses and Implants</subject><subject>Reproducibility of Results</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Survival</subject><subject>Torque</subject><subject>Transplants &amp; implants</subject><subject>Tungsten</subject><subject>Tungsten carbide</subject><subject>Water - chemistry</subject><subject>Weibull modulus</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks9L5DAUx4O4qLjePC-BvQg6mt9NLwsyqCvoLqKeQ9q-rpG2qUk7Mv-9KTM7q3sylxfe-_Dlffk-hA4pOaVUyjNGGDmjRGZaqC20xzgVM0UF3d78Od9FBzE-k_Q0VSRXO2iXs1wJQtUeuru0rhkD4FtfQcS2q_D9GBZuYRvsa3zeDRCcD3ge_GsX06zvfRigwsUS_7IhdfF12ze2G_D9Mg7Qxq_oS22bCAfruo8eLy8e5j9nN7-vrufnN7NSZHSYgcizulI5J1oVkukyJ0UhbG3JtGRWiho02JJlouZW5xwU14xmBJimUHDg--jHSrcfixaqEroh2Mb0wbU2LI23znycdO7J_PELk4lcUsWSwNFaIPiXEeJgWhdLaJIZ8GM0TAgpGM_lhH7_D332Y-iSvYkSTBMmZaJOVlQZfIwB6s0ylJgpLjPFZdZxJfzbewMb-G84CTheAU-uq-yr-6QcJAZq-4-m6RJoxt8ApOCmAA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bonfante, Estevam A.</creator><creator>Zahoui, Abbas</creator><creator>Coelho, Paulo G.</creator><creator>Lopes, Adolfo C. O.</creator><creator>de Araújo-Júnior, Everardo N. S.</creator><creator>Bergamo, Edmara T. P.</creator><creator>Benalcázar Jalkh, Ernesto B.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8347-6124</orcidid><orcidid>https://orcid.org/0000-0001-6867-8350</orcidid><orcidid>https://orcid.org/0000-0002-5006-2184</orcidid><orcidid>https://orcid.org/0000-0002-7184-8485</orcidid><orcidid>https://orcid.org/0000-0001-6916-1564</orcidid><orcidid>https://orcid.org/0000-0002-5769-6913</orcidid><orcidid>https://orcid.org/0000-0003-4528-4855</orcidid></search><sort><creationdate>2020</creationdate><title>Failure Modes and Survival of Anterior Crowns Supported by Narrow Implant Systems</title><author>Bonfante, Estevam A. ; Zahoui, Abbas ; Coelho, Paulo G. ; Lopes, Adolfo C. O. ; de Araújo-Júnior, Everardo N. S. ; Bergamo, Edmara T. P. ; Benalcázar Jalkh, Ernesto B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-e497fd693086b528c90bb4afa016097c4fe8eac274f3a893e6382170e281eb3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated life tests</topic><topic>Accelerated tests</topic><topic>Biomechanics</topic><topic>Crowns</topic><topic>Damage accumulation</topic><topic>Dental Abutments</topic><topic>Dental Implant-Abutment Design - methods</topic><topic>Dental prosthetics</topic><topic>Dental Restoration Failure</topic><topic>Dental Stress Analysis - methods</topic><topic>Failure</topic><topic>Failure modes</topic><topic>Fatigue failure</topic><topic>Fractures</topic><topic>Humans</topic><topic>Incisor - chemistry</topic><topic>Mastication</topic><topic>Materials Testing - methods</topic><topic>Mathematical analysis</topic><topic>Maxilla - chemistry</topic><topic>Microscopy, Electron, Scanning - methods</topic><topic>Parameter estimation</topic><topic>Probability</topic><topic>Prostheses</topic><topic>Prostheses and Implants</topic><topic>Reproducibility of Results</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Survival</topic><topic>Torque</topic><topic>Transplants &amp; implants</topic><topic>Tungsten</topic><topic>Tungsten carbide</topic><topic>Water - chemistry</topic><topic>Weibull modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonfante, Estevam A.</creatorcontrib><creatorcontrib>Zahoui, Abbas</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>Lopes, Adolfo C. O.</creatorcontrib><creatorcontrib>de Araújo-Júnior, Everardo N. S.</creatorcontrib><creatorcontrib>Bergamo, Edmara T. P.</creatorcontrib><creatorcontrib>Benalcázar Jalkh, Ernesto B.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonfante, Estevam A.</au><au>Zahoui, Abbas</au><au>Coelho, Paulo G.</au><au>Lopes, Adolfo C. O.</au><au>de Araújo-Júnior, Everardo N. S.</au><au>Bergamo, Edmara T. P.</au><au>Benalcázar Jalkh, Ernesto B.</au><au>Lerner, Henriette</au><au>Henriette Lerner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure Modes and Survival of Anterior Crowns Supported by Narrow Implant Systems</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The reduced hardware design of narrow implants increases the risk of fracture not only of the implant itself but also of the prosthetic constituents. Hence, the current study is aimed at estimating the probability of survival of anterior crowns supported by different narrow implant systems. Three different narrow implant systems of internal conical connections were evaluated (Ø3.5×10 mm): (i) Active (Nobel Biocare), (ii) Epikut (S.I.N. Implant System), and (iii) BLX (Straumann). Abutments were torqued to the implants, and standardized maxillary incisor crowns were cemented. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water through load application of 30 degrees off-axis lingually at the incisal edge of the crowns using a flat tungsten carbide indenter until fracture or suspension. The use level probability Weibull curves and reliability for completion of a mission of 100,000 cycles at 80 N and 120 N were calculated and plotted. Weibull modulus and characteristic strength were also calculated and plotted. Fractured samples were analyzed in a stereomicroscope. The beta (β) values were 1.6 (0.9-3.1) and 1.4 (0.9-2.2) for BLX and Active implants, respectively, and 0.5 (0.3-0.8) for the Epikut implant, indicating that failures were mainly associated with fatigue damage accumulation in the formers, but more likely associated with material strength in the latter. All narrow implant systems showed high probability of survival (≥95%, CI: 85-100%) at 80 and 120 N, without significant difference between them. Weibull modulus ranged from 6 to 14. The characteristic strength of Active, Epikut, and BLX was 271 (260-282) N, 216 (205-228) N, and 275 (264-285) N, respectively. The failure mode predominantly involved abutment and/or abutment screw fracture, whereas no narrow implant was fractured. Therefore, all narrow implant systems exhibited a high probability of survival for anterior physiologic masticatory forces, and failures were restricted to abutment and abutment screw.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32964016</pmid><doi>10.1155/2020/1057846</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8347-6124</orcidid><orcidid>https://orcid.org/0000-0001-6867-8350</orcidid><orcidid>https://orcid.org/0000-0002-5006-2184</orcidid><orcidid>https://orcid.org/0000-0002-7184-8485</orcidid><orcidid>https://orcid.org/0000-0001-6916-1564</orcidid><orcidid>https://orcid.org/0000-0002-5769-6913</orcidid><orcidid>https://orcid.org/0000-0003-4528-4855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2020, Vol.2020 (2020), p.1-11
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7495162
source MEDLINE; PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Accelerated life tests
Accelerated tests
Biomechanics
Crowns
Damage accumulation
Dental Abutments
Dental Implant-Abutment Design - methods
Dental prosthetics
Dental Restoration Failure
Dental Stress Analysis - methods
Failure
Failure modes
Fatigue failure
Fractures
Humans
Incisor - chemistry
Mastication
Materials Testing - methods
Mathematical analysis
Maxilla - chemistry
Microscopy, Electron, Scanning - methods
Parameter estimation
Probability
Prostheses
Prostheses and Implants
Reproducibility of Results
Stress, Mechanical
Surface Properties
Surgical implants
Survival
Torque
Transplants & implants
Tungsten
Tungsten carbide
Water - chemistry
Weibull modulus
title Failure Modes and Survival of Anterior Crowns Supported by Narrow Implant Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20Modes%20and%20Survival%20of%20Anterior%20Crowns%20Supported%20by%20Narrow%20Implant%20Systems&rft.jtitle=BioMed%20research%20international&rft.au=Bonfante,%20Estevam%20A.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2020/1057846&rft_dat=%3Cproquest_pubme%3E2444280255%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444280255&rft_id=info:pmid/32964016&rfr_iscdi=true