Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract

The gut microbiome is known to be sensitive to changes in the immune system, especially during autoimmune diseases such as Multiple Sclerosis (MS). Our study examines the changes to the gut microbiome that occur during experimental autoimmune encephalomyelitis (EAE), an animal model for MS. We colle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-09, Vol.10 (1), p.15183-15183, Article 15183
Hauptverfasser: Johanson, David M., Goertz, Jennifer E., Marin, Ioana A., Costello, John, Overall, Christopher C., Gaultier, Alban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15183
container_issue 1
container_start_page 15183
container_title Scientific reports
container_volume 10
creator Johanson, David M.
Goertz, Jennifer E.
Marin, Ioana A.
Costello, John
Overall, Christopher C.
Gaultier, Alban
description The gut microbiome is known to be sensitive to changes in the immune system, especially during autoimmune diseases such as Multiple Sclerosis (MS). Our study examines the changes to the gut microbiome that occur during experimental autoimmune encephalomyelitis (EAE), an animal model for MS. We collected fecal samples at key stages of EAE progression and quantified microbial abundances with 16S V3–V4 amplicon sequencing. Our analysis of the data suggests that the abundance of commensal Lactobacillaceae decreases during EAE while other commensal populations belonging to the Clostridiaceae, Ruminococcaceae, and Peptostreptococcaceae families expand. Community analysis with microbial co-occurrence networks points to these three expanding taxa as potential mediators of gut microbiome dysbiosis. We also employed PICRUSt2 to impute MetaCyc Enzyme Consortium (EC) pathway abundances from the original microbial abundance data. From this analysis, we found that a number of imputed EC pathways responsible for the production of immunomodulatory compounds appear to be enriched in mice undergoing EAE. Our analysis and interpretation of results provides a detailed picture of the changes to the gut microbiome that are occurring throughout the course of EAE disease progression and helps to evaluate EAE as a viable model for gut dysbiosis in MS patients.
doi_str_mv 10.1038/s41598-020-72197-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7494894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443878983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-328b52ef99106267e1ff6dfe77ada7dfdee29a3b4fb2e9596ac1960a2ff017ac3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEolXpC7BAltiwCcQ_ieMNEqpKi1SJDaytiTO-cZXYwXaAu-PRMfeWUlhgWbKl-eaMj09VPafNa9rw_k0StFV93bCmlowqWe8fVaesEW3NOGOPH9xPqvOUbpuyWqYEVU-rE84U75VUp9WPy-8rRregzzAT2HJwy7J5JOgNrhPMYdnj7LJLpGxIKRgHGUfyzeWJmAn8DhMJluQJyeJMDIMLGYgJyxpS6QueOH-o7iDlGJzPmLLzZVqOYPKz6omFOeH53XlWfX5_-eniur75ePXh4t1NbYQUueasH1qGVinadKyTSK3tRotSwghytCMiU8AHYQeGqlUdGKq6Bpi1DZVg-Fn19qi7bsOCoymGI8x6Ld4h7nUAp_-ueDfpXfiqpVCiV6IIvLoTiOHLVjzoxSWD8wwew5Y0E4L3slc9L-jLf9DbsMVi-UCxQsgDxY5U-bSUItr7x9BG_8pYHzPWJWN9yFjvS9OLhzbuW34nWgB-BFIplXDin9n_kf0JiRK4EA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442833783</pqid></control><display><type>article</type><title>Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Johanson, David M. ; Goertz, Jennifer E. ; Marin, Ioana A. ; Costello, John ; Overall, Christopher C. ; Gaultier, Alban</creator><creatorcontrib>Johanson, David M. ; Goertz, Jennifer E. ; Marin, Ioana A. ; Costello, John ; Overall, Christopher C. ; Gaultier, Alban</creatorcontrib><description>The gut microbiome is known to be sensitive to changes in the immune system, especially during autoimmune diseases such as Multiple Sclerosis (MS). Our study examines the changes to the gut microbiome that occur during experimental autoimmune encephalomyelitis (EAE), an animal model for MS. We collected fecal samples at key stages of EAE progression and quantified microbial abundances with 16S V3–V4 amplicon sequencing. Our analysis of the data suggests that the abundance of commensal Lactobacillaceae decreases during EAE while other commensal populations belonging to the Clostridiaceae, Ruminococcaceae, and Peptostreptococcaceae families expand. Community analysis with microbial co-occurrence networks points to these three expanding taxa as potential mediators of gut microbiome dysbiosis. We also employed PICRUSt2 to impute MetaCyc Enzyme Consortium (EC) pathway abundances from the original microbial abundance data. From this analysis, we found that a number of imputed EC pathways responsible for the production of immunomodulatory compounds appear to be enriched in mice undergoing EAE. Our analysis and interpretation of results provides a detailed picture of the changes to the gut microbiome that are occurring throughout the course of EAE disease progression and helps to evaluate EAE as a viable model for gut dysbiosis in MS patients.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72197-y</identifier><identifier>PMID: 32938979</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/116 ; 631/114/2164 ; 631/250/38 ; 631/326/2565 ; 692/699/375/1411 ; Abundance ; Animal models ; Animals ; Autoimmune diseases ; Clostridiaceae - physiology ; Digestive system ; Disease Models, Animal ; Dysbacteriosis ; Dysbiosis - microbiology ; Encephalomyelitis ; Encephalomyelitis, Autoimmune, Experimental - microbiology ; Experimental allergic encephalomyelitis ; Feces - microbiology ; Female ; Gastrointestinal Microbiome - genetics ; Gastrointestinal tract ; Humanities and Social Sciences ; Humans ; Immune system ; Immunomodulation ; Intestinal microflora ; Lactobacillaceae - physiology ; Mice ; Mice, Inbred C57BL ; Microbiomes ; Microbiota ; multidisciplinary ; Multiple sclerosis ; Multiple Sclerosis - microbiology ; Peptostreptococcus - physiology ; RNA, Ribosomal, 16S - genetics ; Ruminococcus - physiology ; Science ; Science (multidisciplinary) ; Signal Transduction</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.15183-15183, Article 15183</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-328b52ef99106267e1ff6dfe77ada7dfdee29a3b4fb2e9596ac1960a2ff017ac3</citedby><cites>FETCH-LOGICAL-c474t-328b52ef99106267e1ff6dfe77ada7dfdee29a3b4fb2e9596ac1960a2ff017ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494894/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494894/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32938979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johanson, David M.</creatorcontrib><creatorcontrib>Goertz, Jennifer E.</creatorcontrib><creatorcontrib>Marin, Ioana A.</creatorcontrib><creatorcontrib>Costello, John</creatorcontrib><creatorcontrib>Overall, Christopher C.</creatorcontrib><creatorcontrib>Gaultier, Alban</creatorcontrib><title>Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The gut microbiome is known to be sensitive to changes in the immune system, especially during autoimmune diseases such as Multiple Sclerosis (MS). Our study examines the changes to the gut microbiome that occur during experimental autoimmune encephalomyelitis (EAE), an animal model for MS. We collected fecal samples at key stages of EAE progression and quantified microbial abundances with 16S V3–V4 amplicon sequencing. Our analysis of the data suggests that the abundance of commensal Lactobacillaceae decreases during EAE while other commensal populations belonging to the Clostridiaceae, Ruminococcaceae, and Peptostreptococcaceae families expand. Community analysis with microbial co-occurrence networks points to these three expanding taxa as potential mediators of gut microbiome dysbiosis. We also employed PICRUSt2 to impute MetaCyc Enzyme Consortium (EC) pathway abundances from the original microbial abundance data. From this analysis, we found that a number of imputed EC pathways responsible for the production of immunomodulatory compounds appear to be enriched in mice undergoing EAE. Our analysis and interpretation of results provides a detailed picture of the changes to the gut microbiome that are occurring throughout the course of EAE disease progression and helps to evaluate EAE as a viable model for gut dysbiosis in MS patients.</description><subject>631/114/116</subject><subject>631/114/2164</subject><subject>631/250/38</subject><subject>631/326/2565</subject><subject>692/699/375/1411</subject><subject>Abundance</subject><subject>Animal models</subject><subject>Animals</subject><subject>Autoimmune diseases</subject><subject>Clostridiaceae - physiology</subject><subject>Digestive system</subject><subject>Disease Models, Animal</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis - microbiology</subject><subject>Encephalomyelitis</subject><subject>Encephalomyelitis, Autoimmune, Experimental - microbiology</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Feces - microbiology</subject><subject>Female</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal tract</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunomodulation</subject><subject>Intestinal microflora</subject><subject>Lactobacillaceae - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>multidisciplinary</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - microbiology</subject><subject>Peptostreptococcus - physiology</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Ruminococcus - physiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQhSMEolXpC7BAltiwCcQ_ieMNEqpKi1SJDaytiTO-cZXYwXaAu-PRMfeWUlhgWbKl-eaMj09VPafNa9rw_k0StFV93bCmlowqWe8fVaesEW3NOGOPH9xPqvOUbpuyWqYEVU-rE84U75VUp9WPy-8rRregzzAT2HJwy7J5JOgNrhPMYdnj7LJLpGxIKRgHGUfyzeWJmAn8DhMJluQJyeJMDIMLGYgJyxpS6QueOH-o7iDlGJzPmLLzZVqOYPKz6omFOeH53XlWfX5_-eniur75ePXh4t1NbYQUueasH1qGVinadKyTSK3tRotSwghytCMiU8AHYQeGqlUdGKq6Bpi1DZVg-Fn19qi7bsOCoymGI8x6Ld4h7nUAp_-ueDfpXfiqpVCiV6IIvLoTiOHLVjzoxSWD8wwew5Y0E4L3slc9L-jLf9DbsMVi-UCxQsgDxY5U-bSUItr7x9BG_8pYHzPWJWN9yFjvS9OLhzbuW34nWgB-BFIplXDin9n_kf0JiRK4EA</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Johanson, David M.</creator><creator>Goertz, Jennifer E.</creator><creator>Marin, Ioana A.</creator><creator>Costello, John</creator><creator>Overall, Christopher C.</creator><creator>Gaultier, Alban</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200916</creationdate><title>Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract</title><author>Johanson, David M. ; Goertz, Jennifer E. ; Marin, Ioana A. ; Costello, John ; Overall, Christopher C. ; Gaultier, Alban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-328b52ef99106267e1ff6dfe77ada7dfdee29a3b4fb2e9596ac1960a2ff017ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/116</topic><topic>631/114/2164</topic><topic>631/250/38</topic><topic>631/326/2565</topic><topic>692/699/375/1411</topic><topic>Abundance</topic><topic>Animal models</topic><topic>Animals</topic><topic>Autoimmune diseases</topic><topic>Clostridiaceae - physiology</topic><topic>Digestive system</topic><topic>Disease Models, Animal</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis - microbiology</topic><topic>Encephalomyelitis</topic><topic>Encephalomyelitis, Autoimmune, Experimental - microbiology</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Feces - microbiology</topic><topic>Female</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal tract</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunomodulation</topic><topic>Intestinal microflora</topic><topic>Lactobacillaceae - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>multidisciplinary</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - microbiology</topic><topic>Peptostreptococcus - physiology</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Ruminococcus - physiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johanson, David M.</creatorcontrib><creatorcontrib>Goertz, Jennifer E.</creatorcontrib><creatorcontrib>Marin, Ioana A.</creatorcontrib><creatorcontrib>Costello, John</creatorcontrib><creatorcontrib>Overall, Christopher C.</creatorcontrib><creatorcontrib>Gaultier, Alban</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johanson, David M.</au><au>Goertz, Jennifer E.</au><au>Marin, Ioana A.</au><au>Costello, John</au><au>Overall, Christopher C.</au><au>Gaultier, Alban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-16</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>15183</spage><epage>15183</epage><pages>15183-15183</pages><artnum>15183</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The gut microbiome is known to be sensitive to changes in the immune system, especially during autoimmune diseases such as Multiple Sclerosis (MS). Our study examines the changes to the gut microbiome that occur during experimental autoimmune encephalomyelitis (EAE), an animal model for MS. We collected fecal samples at key stages of EAE progression and quantified microbial abundances with 16S V3–V4 amplicon sequencing. Our analysis of the data suggests that the abundance of commensal Lactobacillaceae decreases during EAE while other commensal populations belonging to the Clostridiaceae, Ruminococcaceae, and Peptostreptococcaceae families expand. Community analysis with microbial co-occurrence networks points to these three expanding taxa as potential mediators of gut microbiome dysbiosis. We also employed PICRUSt2 to impute MetaCyc Enzyme Consortium (EC) pathway abundances from the original microbial abundance data. From this analysis, we found that a number of imputed EC pathways responsible for the production of immunomodulatory compounds appear to be enriched in mice undergoing EAE. Our analysis and interpretation of results provides a detailed picture of the changes to the gut microbiome that are occurring throughout the course of EAE disease progression and helps to evaluate EAE as a viable model for gut dysbiosis in MS patients.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32938979</pmid><doi>10.1038/s41598-020-72197-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-09, Vol.10 (1), p.15183-15183, Article 15183
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7494894
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/114/116
631/114/2164
631/250/38
631/326/2565
692/699/375/1411
Abundance
Animal models
Animals
Autoimmune diseases
Clostridiaceae - physiology
Digestive system
Disease Models, Animal
Dysbacteriosis
Dysbiosis - microbiology
Encephalomyelitis
Encephalomyelitis, Autoimmune, Experimental - microbiology
Experimental allergic encephalomyelitis
Feces - microbiology
Female
Gastrointestinal Microbiome - genetics
Gastrointestinal tract
Humanities and Social Sciences
Humans
Immune system
Immunomodulation
Intestinal microflora
Lactobacillaceae - physiology
Mice
Mice, Inbred C57BL
Microbiomes
Microbiota
multidisciplinary
Multiple sclerosis
Multiple Sclerosis - microbiology
Peptostreptococcus - physiology
RNA, Ribosomal, 16S - genetics
Ruminococcus - physiology
Science
Science (multidisciplinary)
Signal Transduction
title Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20autoimmune%20encephalomyelitis%20is%20associated%20with%20changes%20of%20the%20microbiota%20composition%20in%20the%20gastrointestinal%20tract&rft.jtitle=Scientific%20reports&rft.au=Johanson,%20David%20M.&rft.date=2020-09-16&rft.volume=10&rft.issue=1&rft.spage=15183&rft.epage=15183&rft.pages=15183-15183&rft.artnum=15183&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72197-y&rft_dat=%3Cproquest_pubme%3E2443878983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442833783&rft_id=info:pmid/32938979&rfr_iscdi=true