Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform
Alexander disease results from gain‐of‐function mutations in the gene encoding glial fibrillary acidic protein (GFAP). At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. We describe exonic variants identified in three unrelated...
Gespeichert in:
Veröffentlicht in: | Human mutation 2020-06, Vol.41 (6), p.1131-1137 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1137 |
---|---|
container_issue | 6 |
container_start_page | 1131 |
container_title | Human mutation |
container_volume | 41 |
creator | Helman, Guy Takanohashi, Asako Hagemann, Tracy L. Perng, Ming D. Walkiewicz, Marzena Woidill, Sarah Sase, Sunetra Cross, Zachary Du, Yangzhu Zhao, Ling Waldman, Amy Haake, Bret C. Fatemi, Ali Brenner, Michael Sherbini, Omar Messing, Albee Vanderver, Adeline Simons, Cas |
description | Alexander disease results from gain‐of‐function mutations in the gene encoding glial fibrillary acidic protein (GFAP). At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. We describe exonic variants identified in three unrelated families with Type II Alexander disease that alter the splicing of GFAP pre‐messenger RNA (mRNA) and result in the upregulation of a previously uncharacterized GFAP lambda isoform (NM_001363846.1). Affected members of Family 1 and Family 2 shared the same missense variant, NM_001363846.1:c.1289G>A;p.(Arg430His) while in Family 3 we identified a synonymous variant in the adjacent nucleotide, NM_001363846.1:c.1290C>A;p.(Arg430Arg). Using RNA and protein analysis of brain autopsy samples, and a mini‐gene splicing reporter assay, we demonstrate both variants result in the upregulation of the lambda isoform. Our approach demonstrates the importance of characterizing the effect of GFAP variants on mRNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease.
Variants in the gene encoding glial fibrillary acidic protein (GFAP) cause Alexander disease. At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. Using RNA and protein analysis of brain autopsy samples, and a mini‐gene splicing reporter assay, we demonstrate that some GFAP variants result in the upregulation of uncharacterized GFAP isoforms. Our approach demonstrates the importance of characterizing the effect of GFAP variants on messenger RNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease. |
doi_str_mv | 10.1002/humu.24008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7491703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401489629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4488-a3a7dc0d6b78b9442b04749df6cb14b1b59213ed24a3aa87a9687ee1fe14394d3</originalsourceid><addsrcrecordid>eNp9kUtv1DAURiMEoqWw4QcgS2wQUlq_EscbpFHVx0hFZdFZW37cdFwldrAnpdNfj4cpFbBgZfveo3Ov9VXVe4KPCcb0ZD2P8zHlGHcvqkOCZVeXMn-5uzeyFkLyg-pNzne4EE3DXlcHjBLakoYeVulmOwFaLtFigAcdHCTkfAadAVk9Z3DIbFGeBm99uEWQUkwZFQ5pUx46bFC8hwQPU4KcfQwo9qWN5mDXOmm7geQfi-TifPEN-Rz7mMa31ateDxnePZ1H1er87Ob0sr66vlieLq5qy3nX1Zpp4Sx2rRGdkZxTg7ng0vWtNYQbYhpJCQNHeSF1J7RsOwFAeiCcSe7YUfVl751mM4KzEDZJD2pKftRpq6L26u9O8Gt1G-9VmUIEZkXw6UmQ4vcZ8kaNPlsYBh0gzllRJkiZxZgs6Md_0Ls4p1C-p0owhHeypTvq856yKeacoH9ehmC1i1LtolS_oizwhz_Xf0Z_Z1cAsgd--AG2_1Gpy9XX1V76E1Drq0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401489629</pqid></control><display><type>article</type><title>Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Helman, Guy ; Takanohashi, Asako ; Hagemann, Tracy L. ; Perng, Ming D. ; Walkiewicz, Marzena ; Woidill, Sarah ; Sase, Sunetra ; Cross, Zachary ; Du, Yangzhu ; Zhao, Ling ; Waldman, Amy ; Haake, Bret C. ; Fatemi, Ali ; Brenner, Michael ; Sherbini, Omar ; Messing, Albee ; Vanderver, Adeline ; Simons, Cas</creator><creatorcontrib>Helman, Guy ; Takanohashi, Asako ; Hagemann, Tracy L. ; Perng, Ming D. ; Walkiewicz, Marzena ; Woidill, Sarah ; Sase, Sunetra ; Cross, Zachary ; Du, Yangzhu ; Zhao, Ling ; Waldman, Amy ; Haake, Bret C. ; Fatemi, Ali ; Brenner, Michael ; Sherbini, Omar ; Messing, Albee ; Vanderver, Adeline ; Simons, Cas</creatorcontrib><description>Alexander disease results from gain‐of‐function mutations in the gene encoding glial fibrillary acidic protein (GFAP). At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. We describe exonic variants identified in three unrelated families with Type II Alexander disease that alter the splicing of GFAP pre‐messenger RNA (mRNA) and result in the upregulation of a previously uncharacterized GFAP lambda isoform (NM_001363846.1). Affected members of Family 1 and Family 2 shared the same missense variant, NM_001363846.1:c.1289G>A;p.(Arg430His) while in Family 3 we identified a synonymous variant in the adjacent nucleotide, NM_001363846.1:c.1290C>A;p.(Arg430Arg). Using RNA and protein analysis of brain autopsy samples, and a mini‐gene splicing reporter assay, we demonstrate both variants result in the upregulation of the lambda isoform. Our approach demonstrates the importance of characterizing the effect of GFAP variants on mRNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease.
Variants in the gene encoding glial fibrillary acidic protein (GFAP) cause Alexander disease. At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. Using RNA and protein analysis of brain autopsy samples, and a mini‐gene splicing reporter assay, we demonstrate that some GFAP variants result in the upregulation of uncharacterized GFAP isoforms. Our approach demonstrates the importance of characterizing the effect of GFAP variants on messenger RNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease.</description><identifier>ISSN: 1059-7794</identifier><identifier>ISSN: 1098-1004</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.24008</identifier><identifier>PMID: 32126152</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>aberrant splicing ; Adult ; Aged ; Alexander disease ; Alexander Disease - genetics ; Alexander's disease ; Autopsy ; Child ; Female ; Glial fibrillary acidic protein ; Glial Fibrillary Acidic Protein - genetics ; Humans ; Isoforms ; leukodystrophy ; Male ; Middle Aged ; mRNA ; Mutation, Missense ; Pedigree ; Protein Isoforms - genetics ; Proteins ; RNA Splicing ; Splicing ; Young Adult</subject><ispartof>Human mutation, 2020-06, Vol.41 (6), p.1131-1137</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4488-a3a7dc0d6b78b9442b04749df6cb14b1b59213ed24a3aa87a9687ee1fe14394d3</citedby><cites>FETCH-LOGICAL-c4488-a3a7dc0d6b78b9442b04749df6cb14b1b59213ed24a3aa87a9687ee1fe14394d3</cites><orcidid>0000-0003-3147-8042 ; 0000-0002-4784-7423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.24008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.24008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32126152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helman, Guy</creatorcontrib><creatorcontrib>Takanohashi, Asako</creatorcontrib><creatorcontrib>Hagemann, Tracy L.</creatorcontrib><creatorcontrib>Perng, Ming D.</creatorcontrib><creatorcontrib>Walkiewicz, Marzena</creatorcontrib><creatorcontrib>Woidill, Sarah</creatorcontrib><creatorcontrib>Sase, Sunetra</creatorcontrib><creatorcontrib>Cross, Zachary</creatorcontrib><creatorcontrib>Du, Yangzhu</creatorcontrib><creatorcontrib>Zhao, Ling</creatorcontrib><creatorcontrib>Waldman, Amy</creatorcontrib><creatorcontrib>Haake, Bret C.</creatorcontrib><creatorcontrib>Fatemi, Ali</creatorcontrib><creatorcontrib>Brenner, Michael</creatorcontrib><creatorcontrib>Sherbini, Omar</creatorcontrib><creatorcontrib>Messing, Albee</creatorcontrib><creatorcontrib>Vanderver, Adeline</creatorcontrib><creatorcontrib>Simons, Cas</creatorcontrib><title>Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Alexander disease results from gain‐of‐function mutations in the gene encoding glial fibrillary acidic protein (GFAP). At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. We describe exonic variants identified in three unrelated families with Type II Alexander disease that alter the splicing of GFAP pre‐messenger RNA (mRNA) and result in the upregulation of a previously uncharacterized GFAP lambda isoform (NM_001363846.1). Affected members of Family 1 and Family 2 shared the same missense variant, NM_001363846.1:c.1289G>A;p.(Arg430His) while in Family 3 we identified a synonymous variant in the adjacent nucleotide, NM_001363846.1:c.1290C>A;p.(Arg430Arg). Using RNA and protein analysis of brain autopsy samples, and a mini‐gene splicing reporter assay, we demonstrate both variants result in the upregulation of the lambda isoform. Our approach demonstrates the importance of characterizing the effect of GFAP variants on mRNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease.
Variants in the gene encoding glial fibrillary acidic protein (GFAP) cause Alexander disease. At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. Using RNA and protein analysis of brain autopsy samples, and a mini‐gene splicing reporter assay, we demonstrate that some GFAP variants result in the upregulation of uncharacterized GFAP isoforms. Our approach demonstrates the importance of characterizing the effect of GFAP variants on messenger RNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease.</description><subject>aberrant splicing</subject><subject>Adult</subject><subject>Aged</subject><subject>Alexander disease</subject><subject>Alexander Disease - genetics</subject><subject>Alexander's disease</subject><subject>Autopsy</subject><subject>Child</subject><subject>Female</subject><subject>Glial fibrillary acidic protein</subject><subject>Glial Fibrillary Acidic Protein - genetics</subject><subject>Humans</subject><subject>Isoforms</subject><subject>leukodystrophy</subject><subject>Male</subject><subject>Middle Aged</subject><subject>mRNA</subject><subject>Mutation, Missense</subject><subject>Pedigree</subject><subject>Protein Isoforms - genetics</subject><subject>Proteins</subject><subject>RNA Splicing</subject><subject>Splicing</subject><subject>Young Adult</subject><issn>1059-7794</issn><issn>1098-1004</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAURiMEoqWw4QcgS2wQUlq_EscbpFHVx0hFZdFZW37cdFwldrAnpdNfj4cpFbBgZfveo3Ov9VXVe4KPCcb0ZD2P8zHlGHcvqkOCZVeXMn-5uzeyFkLyg-pNzne4EE3DXlcHjBLakoYeVulmOwFaLtFigAcdHCTkfAadAVk9Z3DIbFGeBm99uEWQUkwZFQ5pUx46bFC8hwQPU4KcfQwo9qWN5mDXOmm7geQfi-TifPEN-Rz7mMa31ateDxnePZ1H1er87Ob0sr66vlieLq5qy3nX1Zpp4Sx2rRGdkZxTg7ng0vWtNYQbYhpJCQNHeSF1J7RsOwFAeiCcSe7YUfVl751mM4KzEDZJD2pKftRpq6L26u9O8Gt1G-9VmUIEZkXw6UmQ4vcZ8kaNPlsYBh0gzllRJkiZxZgs6Md_0Ls4p1C-p0owhHeypTvq856yKeacoH9ehmC1i1LtolS_oizwhz_Xf0Z_Z1cAsgd--AG2_1Gpy9XX1V76E1Drq0k</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Helman, Guy</creator><creator>Takanohashi, Asako</creator><creator>Hagemann, Tracy L.</creator><creator>Perng, Ming D.</creator><creator>Walkiewicz, Marzena</creator><creator>Woidill, Sarah</creator><creator>Sase, Sunetra</creator><creator>Cross, Zachary</creator><creator>Du, Yangzhu</creator><creator>Zhao, Ling</creator><creator>Waldman, Amy</creator><creator>Haake, Bret C.</creator><creator>Fatemi, Ali</creator><creator>Brenner, Michael</creator><creator>Sherbini, Omar</creator><creator>Messing, Albee</creator><creator>Vanderver, Adeline</creator><creator>Simons, Cas</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3147-8042</orcidid><orcidid>https://orcid.org/0000-0002-4784-7423</orcidid></search><sort><creationdate>202006</creationdate><title>Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform</title><author>Helman, Guy ; Takanohashi, Asako ; Hagemann, Tracy L. ; Perng, Ming D. ; Walkiewicz, Marzena ; Woidill, Sarah ; Sase, Sunetra ; Cross, Zachary ; Du, Yangzhu ; Zhao, Ling ; Waldman, Amy ; Haake, Bret C. ; Fatemi, Ali ; Brenner, Michael ; Sherbini, Omar ; Messing, Albee ; Vanderver, Adeline ; Simons, Cas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4488-a3a7dc0d6b78b9442b04749df6cb14b1b59213ed24a3aa87a9687ee1fe14394d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aberrant splicing</topic><topic>Adult</topic><topic>Aged</topic><topic>Alexander disease</topic><topic>Alexander Disease - genetics</topic><topic>Alexander's disease</topic><topic>Autopsy</topic><topic>Child</topic><topic>Female</topic><topic>Glial fibrillary acidic protein</topic><topic>Glial Fibrillary Acidic Protein - genetics</topic><topic>Humans</topic><topic>Isoforms</topic><topic>leukodystrophy</topic><topic>Male</topic><topic>Middle Aged</topic><topic>mRNA</topic><topic>Mutation, Missense</topic><topic>Pedigree</topic><topic>Protein Isoforms - genetics</topic><topic>Proteins</topic><topic>RNA Splicing</topic><topic>Splicing</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helman, Guy</creatorcontrib><creatorcontrib>Takanohashi, Asako</creatorcontrib><creatorcontrib>Hagemann, Tracy L.</creatorcontrib><creatorcontrib>Perng, Ming D.</creatorcontrib><creatorcontrib>Walkiewicz, Marzena</creatorcontrib><creatorcontrib>Woidill, Sarah</creatorcontrib><creatorcontrib>Sase, Sunetra</creatorcontrib><creatorcontrib>Cross, Zachary</creatorcontrib><creatorcontrib>Du, Yangzhu</creatorcontrib><creatorcontrib>Zhao, Ling</creatorcontrib><creatorcontrib>Waldman, Amy</creatorcontrib><creatorcontrib>Haake, Bret C.</creatorcontrib><creatorcontrib>Fatemi, Ali</creatorcontrib><creatorcontrib>Brenner, Michael</creatorcontrib><creatorcontrib>Sherbini, Omar</creatorcontrib><creatorcontrib>Messing, Albee</creatorcontrib><creatorcontrib>Vanderver, Adeline</creatorcontrib><creatorcontrib>Simons, Cas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helman, Guy</au><au>Takanohashi, Asako</au><au>Hagemann, Tracy L.</au><au>Perng, Ming D.</au><au>Walkiewicz, Marzena</au><au>Woidill, Sarah</au><au>Sase, Sunetra</au><au>Cross, Zachary</au><au>Du, Yangzhu</au><au>Zhao, Ling</au><au>Waldman, Amy</au><au>Haake, Bret C.</au><au>Fatemi, Ali</au><au>Brenner, Michael</au><au>Sherbini, Omar</au><au>Messing, Albee</au><au>Vanderver, Adeline</au><au>Simons, Cas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2020-06</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><spage>1131</spage><epage>1137</epage><pages>1131-1137</pages><issn>1059-7794</issn><issn>1098-1004</issn><eissn>1098-1004</eissn><abstract>Alexander disease results from gain‐of‐function mutations in the gene encoding glial fibrillary acidic protein (GFAP). At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. We describe exonic variants identified in three unrelated families with Type II Alexander disease that alter the splicing of GFAP pre‐messenger RNA (mRNA) and result in the upregulation of a previously uncharacterized GFAP lambda isoform (NM_001363846.1). Affected members of Family 1 and Family 2 shared the same missense variant, NM_001363846.1:c.1289G>A;p.(Arg430His) while in Family 3 we identified a synonymous variant in the adjacent nucleotide, NM_001363846.1:c.1290C>A;p.(Arg430Arg). Using RNA and protein analysis of brain autopsy samples, and a mini‐gene splicing reporter assay, we demonstrate both variants result in the upregulation of the lambda isoform. Our approach demonstrates the importance of characterizing the effect of GFAP variants on mRNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease.
Variants in the gene encoding glial fibrillary acidic protein (GFAP) cause Alexander disease. At least eight GFAP isoforms have been described, however, the predominant alpha isoform accounts for ∼90% of GFAP protein. Using RNA and protein analysis of brain autopsy samples, and a mini‐gene splicing reporter assay, we demonstrate that some GFAP variants result in the upregulation of uncharacterized GFAP isoforms. Our approach demonstrates the importance of characterizing the effect of GFAP variants on messenger RNA splicing to inform future pathophysiologic and therapeutic study for Alexander disease.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>32126152</pmid><doi>10.1002/humu.24008</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3147-8042</orcidid><orcidid>https://orcid.org/0000-0002-4784-7423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-7794 |
ispartof | Human mutation, 2020-06, Vol.41 (6), p.1131-1137 |
issn | 1059-7794 1098-1004 1098-1004 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7491703 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | aberrant splicing Adult Aged Alexander disease Alexander Disease - genetics Alexander's disease Autopsy Child Female Glial fibrillary acidic protein Glial Fibrillary Acidic Protein - genetics Humans Isoforms leukodystrophy Male Middle Aged mRNA Mutation, Missense Pedigree Protein Isoforms - genetics Proteins RNA Splicing Splicing Young Adult |
title | Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type%20II%20Alexander%20disease%20caused%20by%20splicing%20errors%20and%20aberrant%20overexpression%20of%20an%20uncharacterized%20GFAP%20isoform&rft.jtitle=Human%20mutation&rft.au=Helman,%20Guy&rft.date=2020-06&rft.volume=41&rft.issue=6&rft.spage=1131&rft.epage=1137&rft.pages=1131-1137&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.24008&rft_dat=%3Cproquest_pubme%3E2401489629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401489629&rft_id=info:pmid/32126152&rfr_iscdi=true |