Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR
HIV-1 capsid plays multiple key roles in viral replication, and inhibition of capsid assembly is an attractive target for therapeutic intervention. Here, we report the atomic-resolution structure of capsid protein (CA) tubes, determined by magic-angle spinning NMR and data-guided molecular dynamics...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2020-09, Vol.27 (9), p.863-869 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 9 |
container_start_page | 863 |
container_title | Nature structural & molecular biology |
container_volume | 27 |
creator | Lu, Manman Russell, Ryan W. Bryer, Alexander J. Quinn, Caitlin M. Hou, Guangjin Zhang, Huilan Schwieters, Charles D. Perilla, Juan R. Gronenborn, Angela M. Polenova, Tatyana |
description | HIV-1 capsid plays multiple key roles in viral replication, and inhibition of capsid assembly is an attractive target for therapeutic intervention. Here, we report the atomic-resolution structure of capsid protein (CA) tubes, determined by magic-angle spinning NMR and data-guided molecular dynamics simulations. Functionally important regions, including the NTD β-hairpin, the cyclophilin A-binding loop, residues in the hexamer central pore, and the NTD-CTD linker region, are well defined. The structure of individual CA chains, their arrangement in the pseudo-hexameric units of the tube and the inter-hexamer interfaces are consistent with those in intact capsids and substantially different from the organization in crystal structures, which feature flat hexamers. The inherent curvature in the CA tubes is controlled by conformational variability of residues in the linker region and of dimer and trimer interfaces. The present structure reveals atomic-level detail in capsid architecture and provides important guidance for the design of novel capsid inhibitors.
Structures of HIV-1 capsid protein (CA) in tubular assemblies, determined by MAS-NMR, reveal the basis of CA’s conformational plasticity. |
doi_str_mv | 10.1038/s41594-020-0489-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7490828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440762944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-ff2ab882c0d38ef606cc45e2542782f67cb0c226ba97dd723cc18766bfb2e84c3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMotlZ_gBsJuHETm5x8TLIRSqm20CqIug2ZTGZMmUmuyUyh_75zue3VFlwlcJ73TQ4PQm8Z_cgo18dVMGkEoUAJFdoQeIYOmRSSGKPl8_3d8AP0qtZrSkHKhr9EBxwMZUzRQ3R1MucpelJCzeMyx5xwncvi56UEnHt8fvGLMOzdpsYOz0sbKm5v8eSGNePSMAZcNzGlmAb89er7a_Sid2MNb-7PI_Tz89mP03Ny-e3LxenJJfGSq5n0PbhWa_C04zr0iirvhQwgBTQaetX4lnoA1TrTdF0D3HumG6XavoWghedH6NOud7O0U-h8SHNxo92UOLlya7OL9vEkxd92yDe2EYZq0GvBh_uCkv8soc52itWHcXQp5KVaEIKB4oaKFX3_BL3OS0nreluKNgqM2FJsR_mSay2h33-GUbuVZXey7CrLbmVZWDPv_t1in3iwswKwA-o6SkMof5_-f-sd2XefcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440762944</pqid></control><display><type>article</type><title>Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><source>Nature Journals Online</source><creator>Lu, Manman ; Russell, Ryan W. ; Bryer, Alexander J. ; Quinn, Caitlin M. ; Hou, Guangjin ; Zhang, Huilan ; Schwieters, Charles D. ; Perilla, Juan R. ; Gronenborn, Angela M. ; Polenova, Tatyana</creator><creatorcontrib>Lu, Manman ; Russell, Ryan W. ; Bryer, Alexander J. ; Quinn, Caitlin M. ; Hou, Guangjin ; Zhang, Huilan ; Schwieters, Charles D. ; Perilla, Juan R. ; Gronenborn, Angela M. ; Polenova, Tatyana</creatorcontrib><description>HIV-1 capsid plays multiple key roles in viral replication, and inhibition of capsid assembly is an attractive target for therapeutic intervention. Here, we report the atomic-resolution structure of capsid protein (CA) tubes, determined by magic-angle spinning NMR and data-guided molecular dynamics simulations. Functionally important regions, including the NTD β-hairpin, the cyclophilin A-binding loop, residues in the hexamer central pore, and the NTD-CTD linker region, are well defined. The structure of individual CA chains, their arrangement in the pseudo-hexameric units of the tube and the inter-hexamer interfaces are consistent with those in intact capsids and substantially different from the organization in crystal structures, which feature flat hexamers. The inherent curvature in the CA tubes is controlled by conformational variability of residues in the linker region and of dimer and trimer interfaces. The present structure reveals atomic-level detail in capsid architecture and provides important guidance for the design of novel capsid inhibitors.
Structures of HIV-1 capsid protein (CA) in tubular assemblies, determined by MAS-NMR, reveal the basis of CA’s conformational plasticity.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0489-2</identifier><identifier>PMID: 32901160</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/6 ; 631/535/878/1264 ; 631/57/2272 ; Atomic structure ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Capsid - chemistry ; Capsid protein ; Capsid Proteins - chemistry ; Capsids ; Crystal structure ; Dimers ; Genomes ; Hexamers ; HIV ; HIV Infections - virology ; HIV-1 - chemistry ; Human immunodeficiency virus ; Humans ; Interfaces ; Laboratories ; Life Sciences ; Membrane Biology ; Models, Molecular ; Molecular biology ; Molecular dynamics ; Molecular structure ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Polypeptides ; Protein Conformation ; Protein Multimerization ; Protein Structure ; Proteins ; Residues ; Simulation ; Trimers ; Tubes</subject><ispartof>Nature structural & molecular biology, 2020-09, Vol.27 (9), p.863-869</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-ff2ab882c0d38ef606cc45e2542782f67cb0c226ba97dd723cc18766bfb2e84c3</citedby><cites>FETCH-LOGICAL-c536t-ff2ab882c0d38ef606cc45e2542782f67cb0c226ba97dd723cc18766bfb2e84c3</cites><orcidid>0000-0002-3599-133X ; 0000-0001-8216-863X ; 0000-0002-0346-1131 ; 0000-0003-1171-6816 ; 0000-0002-4156-4975 ; 0000-0001-6172-7324 ; 0000-0001-9072-3525 ; 0000-0002-4216-4658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0489-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0489-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32901160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Manman</creatorcontrib><creatorcontrib>Russell, Ryan W.</creatorcontrib><creatorcontrib>Bryer, Alexander J.</creatorcontrib><creatorcontrib>Quinn, Caitlin M.</creatorcontrib><creatorcontrib>Hou, Guangjin</creatorcontrib><creatorcontrib>Zhang, Huilan</creatorcontrib><creatorcontrib>Schwieters, Charles D.</creatorcontrib><creatorcontrib>Perilla, Juan R.</creatorcontrib><creatorcontrib>Gronenborn, Angela M.</creatorcontrib><creatorcontrib>Polenova, Tatyana</creatorcontrib><title>Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>HIV-1 capsid plays multiple key roles in viral replication, and inhibition of capsid assembly is an attractive target for therapeutic intervention. Here, we report the atomic-resolution structure of capsid protein (CA) tubes, determined by magic-angle spinning NMR and data-guided molecular dynamics simulations. Functionally important regions, including the NTD β-hairpin, the cyclophilin A-binding loop, residues in the hexamer central pore, and the NTD-CTD linker region, are well defined. The structure of individual CA chains, their arrangement in the pseudo-hexameric units of the tube and the inter-hexamer interfaces are consistent with those in intact capsids and substantially different from the organization in crystal structures, which feature flat hexamers. The inherent curvature in the CA tubes is controlled by conformational variability of residues in the linker region and of dimer and trimer interfaces. The present structure reveals atomic-level detail in capsid architecture and provides important guidance for the design of novel capsid inhibitors.
Structures of HIV-1 capsid protein (CA) in tubular assemblies, determined by MAS-NMR, reveal the basis of CA’s conformational plasticity.</description><subject>101/6</subject><subject>631/535/878/1264</subject><subject>631/57/2272</subject><subject>Atomic structure</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Capsid - chemistry</subject><subject>Capsid protein</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsids</subject><subject>Crystal structure</subject><subject>Dimers</subject><subject>Genomes</subject><subject>Hexamers</subject><subject>HIV</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - chemistry</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Interfaces</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Polypeptides</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Residues</subject><subject>Simulation</subject><subject>Trimers</subject><subject>Tubes</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1rFTEUhoMotlZ_gBsJuHETm5x8TLIRSqm20CqIug2ZTGZMmUmuyUyh_75zue3VFlwlcJ73TQ4PQm8Z_cgo18dVMGkEoUAJFdoQeIYOmRSSGKPl8_3d8AP0qtZrSkHKhr9EBxwMZUzRQ3R1MucpelJCzeMyx5xwncvi56UEnHt8fvGLMOzdpsYOz0sbKm5v8eSGNePSMAZcNzGlmAb89er7a_Sid2MNb-7PI_Tz89mP03Ny-e3LxenJJfGSq5n0PbhWa_C04zr0iirvhQwgBTQaetX4lnoA1TrTdF0D3HumG6XavoWghedH6NOud7O0U-h8SHNxo92UOLlya7OL9vEkxd92yDe2EYZq0GvBh_uCkv8soc52itWHcXQp5KVaEIKB4oaKFX3_BL3OS0nreluKNgqM2FJsR_mSay2h33-GUbuVZXey7CrLbmVZWDPv_t1in3iwswKwA-o6SkMof5_-f-sd2XefcQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lu, Manman</creator><creator>Russell, Ryan W.</creator><creator>Bryer, Alexander J.</creator><creator>Quinn, Caitlin M.</creator><creator>Hou, Guangjin</creator><creator>Zhang, Huilan</creator><creator>Schwieters, Charles D.</creator><creator>Perilla, Juan R.</creator><creator>Gronenborn, Angela M.</creator><creator>Polenova, Tatyana</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3599-133X</orcidid><orcidid>https://orcid.org/0000-0001-8216-863X</orcidid><orcidid>https://orcid.org/0000-0002-0346-1131</orcidid><orcidid>https://orcid.org/0000-0003-1171-6816</orcidid><orcidid>https://orcid.org/0000-0002-4156-4975</orcidid><orcidid>https://orcid.org/0000-0001-6172-7324</orcidid><orcidid>https://orcid.org/0000-0001-9072-3525</orcidid><orcidid>https://orcid.org/0000-0002-4216-4658</orcidid></search><sort><creationdate>20200901</creationdate><title>Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR</title><author>Lu, Manman ; Russell, Ryan W. ; Bryer, Alexander J. ; Quinn, Caitlin M. ; Hou, Guangjin ; Zhang, Huilan ; Schwieters, Charles D. ; Perilla, Juan R. ; Gronenborn, Angela M. ; Polenova, Tatyana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-ff2ab882c0d38ef606cc45e2542782f67cb0c226ba97dd723cc18766bfb2e84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/6</topic><topic>631/535/878/1264</topic><topic>631/57/2272</topic><topic>Atomic structure</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Capsid - chemistry</topic><topic>Capsid protein</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsids</topic><topic>Crystal structure</topic><topic>Dimers</topic><topic>Genomes</topic><topic>Hexamers</topic><topic>HIV</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - chemistry</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Interfaces</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Polypeptides</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Residues</topic><topic>Simulation</topic><topic>Trimers</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Manman</creatorcontrib><creatorcontrib>Russell, Ryan W.</creatorcontrib><creatorcontrib>Bryer, Alexander J.</creatorcontrib><creatorcontrib>Quinn, Caitlin M.</creatorcontrib><creatorcontrib>Hou, Guangjin</creatorcontrib><creatorcontrib>Zhang, Huilan</creatorcontrib><creatorcontrib>Schwieters, Charles D.</creatorcontrib><creatorcontrib>Perilla, Juan R.</creatorcontrib><creatorcontrib>Gronenborn, Angela M.</creatorcontrib><creatorcontrib>Polenova, Tatyana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Manman</au><au>Russell, Ryan W.</au><au>Bryer, Alexander J.</au><au>Quinn, Caitlin M.</au><au>Hou, Guangjin</au><au>Zhang, Huilan</au><au>Schwieters, Charles D.</au><au>Perilla, Juan R.</au><au>Gronenborn, Angela M.</au><au>Polenova, Tatyana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>27</volume><issue>9</issue><spage>863</spage><epage>869</epage><pages>863-869</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>HIV-1 capsid plays multiple key roles in viral replication, and inhibition of capsid assembly is an attractive target for therapeutic intervention. Here, we report the atomic-resolution structure of capsid protein (CA) tubes, determined by magic-angle spinning NMR and data-guided molecular dynamics simulations. Functionally important regions, including the NTD β-hairpin, the cyclophilin A-binding loop, residues in the hexamer central pore, and the NTD-CTD linker region, are well defined. The structure of individual CA chains, their arrangement in the pseudo-hexameric units of the tube and the inter-hexamer interfaces are consistent with those in intact capsids and substantially different from the organization in crystal structures, which feature flat hexamers. The inherent curvature in the CA tubes is controlled by conformational variability of residues in the linker region and of dimer and trimer interfaces. The present structure reveals atomic-level detail in capsid architecture and provides important guidance for the design of novel capsid inhibitors.
Structures of HIV-1 capsid protein (CA) in tubular assemblies, determined by MAS-NMR, reveal the basis of CA’s conformational plasticity.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32901160</pmid><doi>10.1038/s41594-020-0489-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3599-133X</orcidid><orcidid>https://orcid.org/0000-0001-8216-863X</orcidid><orcidid>https://orcid.org/0000-0002-0346-1131</orcidid><orcidid>https://orcid.org/0000-0003-1171-6816</orcidid><orcidid>https://orcid.org/0000-0002-4156-4975</orcidid><orcidid>https://orcid.org/0000-0001-6172-7324</orcidid><orcidid>https://orcid.org/0000-0001-9072-3525</orcidid><orcidid>https://orcid.org/0000-0002-4216-4658</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2020-09, Vol.27 (9), p.863-869 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7490828 |
source | MEDLINE; Springer Online Journals Complete; Nature Journals Online |
subjects | 101/6 631/535/878/1264 631/57/2272 Atomic structure Biochemistry Biological Microscopy Biomedical and Life Sciences Capsid - chemistry Capsid protein Capsid Proteins - chemistry Capsids Crystal structure Dimers Genomes Hexamers HIV HIV Infections - virology HIV-1 - chemistry Human immunodeficiency virus Humans Interfaces Laboratories Life Sciences Membrane Biology Models, Molecular Molecular biology Molecular dynamics Molecular structure NMR Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Polypeptides Protein Conformation Protein Multimerization Protein Structure Proteins Residues Simulation Trimers Tubes |
title | Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-resolution%20structure%20of%20HIV-1%20capsid%20tubes%20by%20magic-angle%20spinning%20NMR&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Lu,%20Manman&rft.date=2020-09-01&rft.volume=27&rft.issue=9&rft.spage=863&rft.epage=869&rft.pages=863-869&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0489-2&rft_dat=%3Cproquest_pubme%3E2440762944%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440762944&rft_id=info:pmid/32901160&rfr_iscdi=true |