MassARRAY-based single nucleotide polymorphism analysis in breast cancer of north Indian population

Breast Cancer (BC) is associated with inherited gene mutations. High throughput genotyping of BC samples has led to the identification and characterization of biomarkers for the diagnosis of BC. The most common genetic variants studied are SNPs (Single Nucleotide Polymorphisms) that determine suscep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC cancer 2020-09, Vol.20 (1), p.861-8, Article 861
Hauptverfasser: Bakshi, Divya, Nagpal, Ashna, Sharma, Varun, Sharma, Indu, Shah, Ruchi, Sharma, Bhanu, Bhat, Amrita, Verma, Sonali, Bhat, Gh Rasool, Abrol, Deepak, Sharma, Rahul, Vaishnavi, Samantha, Kumar, Rakesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 861
container_title BMC cancer
container_volume 20
creator Bakshi, Divya
Nagpal, Ashna
Sharma, Varun
Sharma, Indu
Shah, Ruchi
Sharma, Bhanu
Bhat, Amrita
Verma, Sonali
Bhat, Gh Rasool
Abrol, Deepak
Sharma, Rahul
Vaishnavi, Samantha
Kumar, Rakesh
description Breast Cancer (BC) is associated with inherited gene mutations. High throughput genotyping of BC samples has led to the identification and characterization of biomarkers for the diagnosis of BC. The most common genetic variants studied are SNPs (Single Nucleotide Polymorphisms) that determine susceptibility to an array of diseases thus serving as a potential tool for identifying the underlying causes of breast carcinogenesis. SNP genotyping employing the Agena MassARRAY offers a robust, sensitive, cost-effective method to assess multiple SNPs and samples simultaneously. In this present study, we analyzed 15 SNPs of 14 genes in 550 samples (150 cases and 400 controls). We identified four SNPs of genes TCF21, SLC19A1, DCC, and ERCC1 showing significant association with BC in the population under study. The SNPs were rs12190287 (TCF21) having OR 1.713 (1.08-2.716 at 95% CI) p-value 0.022 (dominant), rs1051266 (SLC19A1) having OR 3.461 (2.136-5.609 at 95% CI) p-value 0.000000466 (dominant), rs2229080 (DCC) having OR 0.6867 (0.5123-0.9205 at 95% CI) p-value 0.0116 (allelic) and rs2298881 (ERCC1) having OR 0.669 (0.46-0.973 at 95% CI), p-value 0.035 (additive) respectively. The in-silico analysis was further used to fortify the above findings. It is further anticipated that the variants should be evaluated in other population groups that may aid in understanding the genetic complexity and bridge the missing heritability.
doi_str_mv 10.1186/s12885-020-07361-8
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7487711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A635067142</galeid><doaj_id>oai_doaj_org_article_50dda813bc7744e5ac2a035bea92563b</doaj_id><sourcerecordid>A635067142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-167f96510800935e2aea3568639c543751cab0b5c3083e1c62b9add4115f6bad3</originalsourceid><addsrcrecordid>eNptkl2L1DAUhoso7rr6B7yQgrDgRdd8J70RhsWPgRVh1AuvwmmaTjO0yZi04vx7szvrOgXJRcLJ876cnLxF8RKjK4yVeJswUYpXiKAKSSpwpR4V55hJXBGG5OOT81nxLKUdQlgqpJ4WZ5SomiElzgvzGVJabTarH1UDybZlcn472NLPZrBhcq0t92E4jCHue5fGEjwMh-RS6XzZRAtpKg14Y2MZutKHOPXl2rcOfJbt5wEmF_zz4kkHQ7Iv7veL4vuH99-uP1U3Xz6ur1c3lRFETRUWsqsFx0ghVFNuCVigXChBa8MZlRwbaFDDDUWKWpxFTQ1tyzDmnWigpRfF-ujbBtjpfXQjxIMO4PRdIcSthji5_DDNUduCwrQxUjJmORgCiPLGQk24oE32enf02s_NaFtj_RRhWJgub7zr9Tb80pIpKTHOBq_vDWL4Ods06V2YY55e0oSx3DQRTP6jtpC7cr4L2cyMLhm9EpQjITEjmbr6D5VXa0dngredy_WF4M1CkJnJ_p62MKek1183S_byhO0tDFOfwjDf_lxaguQImhhSirZ7mAZG-jaQ-hhInQOp7wKpVRa9Op3jg-RvAukf_1_ZSg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444112647</pqid></control><display><type>article</type><title>MassARRAY-based single nucleotide polymorphism analysis in breast cancer of north Indian population</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bakshi, Divya ; Nagpal, Ashna ; Sharma, Varun ; Sharma, Indu ; Shah, Ruchi ; Sharma, Bhanu ; Bhat, Amrita ; Verma, Sonali ; Bhat, Gh Rasool ; Abrol, Deepak ; Sharma, Rahul ; Vaishnavi, Samantha ; Kumar, Rakesh</creator><creatorcontrib>Bakshi, Divya ; Nagpal, Ashna ; Sharma, Varun ; Sharma, Indu ; Shah, Ruchi ; Sharma, Bhanu ; Bhat, Amrita ; Verma, Sonali ; Bhat, Gh Rasool ; Abrol, Deepak ; Sharma, Rahul ; Vaishnavi, Samantha ; Kumar, Rakesh</creatorcontrib><description>Breast Cancer (BC) is associated with inherited gene mutations. High throughput genotyping of BC samples has led to the identification and characterization of biomarkers for the diagnosis of BC. The most common genetic variants studied are SNPs (Single Nucleotide Polymorphisms) that determine susceptibility to an array of diseases thus serving as a potential tool for identifying the underlying causes of breast carcinogenesis. SNP genotyping employing the Agena MassARRAY offers a robust, sensitive, cost-effective method to assess multiple SNPs and samples simultaneously. In this present study, we analyzed 15 SNPs of 14 genes in 550 samples (150 cases and 400 controls). We identified four SNPs of genes TCF21, SLC19A1, DCC, and ERCC1 showing significant association with BC in the population under study. The SNPs were rs12190287 (TCF21) having OR 1.713 (1.08-2.716 at 95% CI) p-value 0.022 (dominant), rs1051266 (SLC19A1) having OR 3.461 (2.136-5.609 at 95% CI) p-value 0.000000466 (dominant), rs2229080 (DCC) having OR 0.6867 (0.5123-0.9205 at 95% CI) p-value 0.0116 (allelic) and rs2298881 (ERCC1) having OR 0.669 (0.46-0.973 at 95% CI), p-value 0.035 (additive) respectively. The in-silico analysis was further used to fortify the above findings. It is further anticipated that the variants should be evaluated in other population groups that may aid in understanding the genetic complexity and bridge the missing heritability.</description><identifier>ISSN: 1471-2407</identifier><identifier>EISSN: 1471-2407</identifier><identifier>DOI: 10.1186/s12885-020-07361-8</identifier><identifier>PMID: 32894086</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adult ; Aged ; Alleles ; Analysis ; Asian Continental Ancestry Group - genetics ; Binding sites ; Breast cancer ; Breast Neoplasms - epidemiology ; Breast Neoplasms - genetics ; Breast Neoplasms - pathology ; Cancer research ; Carcinogenesis ; Cell cycle ; Colorectal cancer ; Deoxyribonucleic acid ; Disease susceptibility ; DNA ; DNA damage ; EDTA ; ERCC1 protein ; Female ; Gene mutation ; Genes ; Genetic aspects ; Genetic Association Studies ; Genetic diversity ; Genetic Predisposition to Disease ; Genetic Variation - genetics ; Genetics, Population ; Genotype ; Genotyping ; Heritability ; Humans ; India - epidemiology ; Jammu and Kashmir ; Lung cancer ; Middle Aged ; Neoplasm Proteins - genetics ; Polymorphism, Single Nucleotide - genetics ; Population ; Population studies ; Single nucleotide polymorphism ; Single nucleotide polymorphisms ; Womens health</subject><ispartof>BMC cancer, 2020-09, Vol.20 (1), p.861-8, Article 861</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-167f96510800935e2aea3568639c543751cab0b5c3083e1c62b9add4115f6bad3</citedby><cites>FETCH-LOGICAL-c628t-167f96510800935e2aea3568639c543751cab0b5c3083e1c62b9add4115f6bad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487711/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487711/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32894086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bakshi, Divya</creatorcontrib><creatorcontrib>Nagpal, Ashna</creatorcontrib><creatorcontrib>Sharma, Varun</creatorcontrib><creatorcontrib>Sharma, Indu</creatorcontrib><creatorcontrib>Shah, Ruchi</creatorcontrib><creatorcontrib>Sharma, Bhanu</creatorcontrib><creatorcontrib>Bhat, Amrita</creatorcontrib><creatorcontrib>Verma, Sonali</creatorcontrib><creatorcontrib>Bhat, Gh Rasool</creatorcontrib><creatorcontrib>Abrol, Deepak</creatorcontrib><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Vaishnavi, Samantha</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><title>MassARRAY-based single nucleotide polymorphism analysis in breast cancer of north Indian population</title><title>BMC cancer</title><addtitle>BMC Cancer</addtitle><description>Breast Cancer (BC) is associated with inherited gene mutations. High throughput genotyping of BC samples has led to the identification and characterization of biomarkers for the diagnosis of BC. The most common genetic variants studied are SNPs (Single Nucleotide Polymorphisms) that determine susceptibility to an array of diseases thus serving as a potential tool for identifying the underlying causes of breast carcinogenesis. SNP genotyping employing the Agena MassARRAY offers a robust, sensitive, cost-effective method to assess multiple SNPs and samples simultaneously. In this present study, we analyzed 15 SNPs of 14 genes in 550 samples (150 cases and 400 controls). We identified four SNPs of genes TCF21, SLC19A1, DCC, and ERCC1 showing significant association with BC in the population under study. The SNPs were rs12190287 (TCF21) having OR 1.713 (1.08-2.716 at 95% CI) p-value 0.022 (dominant), rs1051266 (SLC19A1) having OR 3.461 (2.136-5.609 at 95% CI) p-value 0.000000466 (dominant), rs2229080 (DCC) having OR 0.6867 (0.5123-0.9205 at 95% CI) p-value 0.0116 (allelic) and rs2298881 (ERCC1) having OR 0.669 (0.46-0.973 at 95% CI), p-value 0.035 (additive) respectively. The in-silico analysis was further used to fortify the above findings. It is further anticipated that the variants should be evaluated in other population groups that may aid in understanding the genetic complexity and bridge the missing heritability.</description><subject>Adult</subject><subject>Aged</subject><subject>Alleles</subject><subject>Analysis</subject><subject>Asian Continental Ancestry Group - genetics</subject><subject>Binding sites</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - epidemiology</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer research</subject><subject>Carcinogenesis</subject><subject>Cell cycle</subject><subject>Colorectal cancer</subject><subject>Deoxyribonucleic acid</subject><subject>Disease susceptibility</subject><subject>DNA</subject><subject>DNA damage</subject><subject>EDTA</subject><subject>ERCC1 protein</subject><subject>Female</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies</subject><subject>Genetic diversity</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Variation - genetics</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>Genotyping</subject><subject>Heritability</subject><subject>Humans</subject><subject>India - epidemiology</subject><subject>Jammu and Kashmir</subject><subject>Lung cancer</subject><subject>Middle Aged</subject><subject>Neoplasm Proteins - genetics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population</subject><subject>Population studies</subject><subject>Single nucleotide polymorphism</subject><subject>Single nucleotide polymorphisms</subject><subject>Womens health</subject><issn>1471-2407</issn><issn>1471-2407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2L1DAUhoso7rr6B7yQgrDgRdd8J70RhsWPgRVh1AuvwmmaTjO0yZi04vx7szvrOgXJRcLJ876cnLxF8RKjK4yVeJswUYpXiKAKSSpwpR4V55hJXBGG5OOT81nxLKUdQlgqpJ4WZ5SomiElzgvzGVJabTarH1UDybZlcn472NLPZrBhcq0t92E4jCHue5fGEjwMh-RS6XzZRAtpKg14Y2MZutKHOPXl2rcOfJbt5wEmF_zz4kkHQ7Iv7veL4vuH99-uP1U3Xz6ur1c3lRFETRUWsqsFx0ghVFNuCVigXChBa8MZlRwbaFDDDUWKWpxFTQ1tyzDmnWigpRfF-ujbBtjpfXQjxIMO4PRdIcSthji5_DDNUduCwrQxUjJmORgCiPLGQk24oE32enf02s_NaFtj_RRhWJgub7zr9Tb80pIpKTHOBq_vDWL4Ods06V2YY55e0oSx3DQRTP6jtpC7cr4L2cyMLhm9EpQjITEjmbr6D5VXa0dngredy_WF4M1CkJnJ_p62MKek1183S_byhO0tDFOfwjDf_lxaguQImhhSirZ7mAZG-jaQ-hhInQOp7wKpVRa9Op3jg-RvAukf_1_ZSg</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Bakshi, Divya</creator><creator>Nagpal, Ashna</creator><creator>Sharma, Varun</creator><creator>Sharma, Indu</creator><creator>Shah, Ruchi</creator><creator>Sharma, Bhanu</creator><creator>Bhat, Amrita</creator><creator>Verma, Sonali</creator><creator>Bhat, Gh Rasool</creator><creator>Abrol, Deepak</creator><creator>Sharma, Rahul</creator><creator>Vaishnavi, Samantha</creator><creator>Kumar, Rakesh</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200907</creationdate><title>MassARRAY-based single nucleotide polymorphism analysis in breast cancer of north Indian population</title><author>Bakshi, Divya ; Nagpal, Ashna ; Sharma, Varun ; Sharma, Indu ; Shah, Ruchi ; Sharma, Bhanu ; Bhat, Amrita ; Verma, Sonali ; Bhat, Gh Rasool ; Abrol, Deepak ; Sharma, Rahul ; Vaishnavi, Samantha ; Kumar, Rakesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-167f96510800935e2aea3568639c543751cab0b5c3083e1c62b9add4115f6bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Alleles</topic><topic>Analysis</topic><topic>Asian Continental Ancestry Group - genetics</topic><topic>Binding sites</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - epidemiology</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer research</topic><topic>Carcinogenesis</topic><topic>Cell cycle</topic><topic>Colorectal cancer</topic><topic>Deoxyribonucleic acid</topic><topic>Disease susceptibility</topic><topic>DNA</topic><topic>DNA damage</topic><topic>EDTA</topic><topic>ERCC1 protein</topic><topic>Female</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies</topic><topic>Genetic diversity</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Variation - genetics</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>Genotyping</topic><topic>Heritability</topic><topic>Humans</topic><topic>India - epidemiology</topic><topic>Jammu and Kashmir</topic><topic>Lung cancer</topic><topic>Middle Aged</topic><topic>Neoplasm Proteins - genetics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population</topic><topic>Population studies</topic><topic>Single nucleotide polymorphism</topic><topic>Single nucleotide polymorphisms</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakshi, Divya</creatorcontrib><creatorcontrib>Nagpal, Ashna</creatorcontrib><creatorcontrib>Sharma, Varun</creatorcontrib><creatorcontrib>Sharma, Indu</creatorcontrib><creatorcontrib>Shah, Ruchi</creatorcontrib><creatorcontrib>Sharma, Bhanu</creatorcontrib><creatorcontrib>Bhat, Amrita</creatorcontrib><creatorcontrib>Verma, Sonali</creatorcontrib><creatorcontrib>Bhat, Gh Rasool</creatorcontrib><creatorcontrib>Abrol, Deepak</creatorcontrib><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Vaishnavi, Samantha</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakshi, Divya</au><au>Nagpal, Ashna</au><au>Sharma, Varun</au><au>Sharma, Indu</au><au>Shah, Ruchi</au><au>Sharma, Bhanu</au><au>Bhat, Amrita</au><au>Verma, Sonali</au><au>Bhat, Gh Rasool</au><au>Abrol, Deepak</au><au>Sharma, Rahul</au><au>Vaishnavi, Samantha</au><au>Kumar, Rakesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MassARRAY-based single nucleotide polymorphism analysis in breast cancer of north Indian population</atitle><jtitle>BMC cancer</jtitle><addtitle>BMC Cancer</addtitle><date>2020-09-07</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>861</spage><epage>8</epage><pages>861-8</pages><artnum>861</artnum><issn>1471-2407</issn><eissn>1471-2407</eissn><abstract>Breast Cancer (BC) is associated with inherited gene mutations. High throughput genotyping of BC samples has led to the identification and characterization of biomarkers for the diagnosis of BC. The most common genetic variants studied are SNPs (Single Nucleotide Polymorphisms) that determine susceptibility to an array of diseases thus serving as a potential tool for identifying the underlying causes of breast carcinogenesis. SNP genotyping employing the Agena MassARRAY offers a robust, sensitive, cost-effective method to assess multiple SNPs and samples simultaneously. In this present study, we analyzed 15 SNPs of 14 genes in 550 samples (150 cases and 400 controls). We identified four SNPs of genes TCF21, SLC19A1, DCC, and ERCC1 showing significant association with BC in the population under study. The SNPs were rs12190287 (TCF21) having OR 1.713 (1.08-2.716 at 95% CI) p-value 0.022 (dominant), rs1051266 (SLC19A1) having OR 3.461 (2.136-5.609 at 95% CI) p-value 0.000000466 (dominant), rs2229080 (DCC) having OR 0.6867 (0.5123-0.9205 at 95% CI) p-value 0.0116 (allelic) and rs2298881 (ERCC1) having OR 0.669 (0.46-0.973 at 95% CI), p-value 0.035 (additive) respectively. The in-silico analysis was further used to fortify the above findings. It is further anticipated that the variants should be evaluated in other population groups that may aid in understanding the genetic complexity and bridge the missing heritability.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32894086</pmid><doi>10.1186/s12885-020-07361-8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2407
ispartof BMC cancer, 2020-09, Vol.20 (1), p.861-8, Article 861
issn 1471-2407
1471-2407
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7487711
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Adult
Aged
Alleles
Analysis
Asian Continental Ancestry Group - genetics
Binding sites
Breast cancer
Breast Neoplasms - epidemiology
Breast Neoplasms - genetics
Breast Neoplasms - pathology
Cancer research
Carcinogenesis
Cell cycle
Colorectal cancer
Deoxyribonucleic acid
Disease susceptibility
DNA
DNA damage
EDTA
ERCC1 protein
Female
Gene mutation
Genes
Genetic aspects
Genetic Association Studies
Genetic diversity
Genetic Predisposition to Disease
Genetic Variation - genetics
Genetics, Population
Genotype
Genotyping
Heritability
Humans
India - epidemiology
Jammu and Kashmir
Lung cancer
Middle Aged
Neoplasm Proteins - genetics
Polymorphism, Single Nucleotide - genetics
Population
Population studies
Single nucleotide polymorphism
Single nucleotide polymorphisms
Womens health
title MassARRAY-based single nucleotide polymorphism analysis in breast cancer of north Indian population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MassARRAY-based%20single%20nucleotide%20polymorphism%20analysis%20in%20breast%20cancer%20of%20north%20Indian%20population&rft.jtitle=BMC%20cancer&rft.au=Bakshi,%20Divya&rft.date=2020-09-07&rft.volume=20&rft.issue=1&rft.spage=861&rft.epage=8&rft.pages=861-8&rft.artnum=861&rft.issn=1471-2407&rft.eissn=1471-2407&rft_id=info:doi/10.1186/s12885-020-07361-8&rft_dat=%3Cgale_doaj_%3EA635067142%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444112647&rft_id=info:pmid/32894086&rft_galeid=A635067142&rft_doaj_id=oai_doaj_org_article_50dda813bc7744e5ac2a035bea92563b&rfr_iscdi=true