Deep‐Learning Detection of Cancer Metastases to the Brain on MRI

Background Approximately one‐fourth of all cancer metastases are found in the brain. MRI is the primary technique for detection of brain metastasis, planning of radiotherapy, and the monitoring of treatment response. Progress in tumor treatment now requires detection of new or growing metastases at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2020-10, Vol.52 (4), p.1227-1236
Hauptverfasser: Zhang, Min, Young, Geoffrey S., Chen, Huai, Li, Jing, Qin, Lei, McFaline‐Figueroa, J. Ricardo, Reardon, David A., Cao, Xinhua, Wu, Xian, Xu, Xiaoyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1236
container_issue 4
container_start_page 1227
container_title Journal of magnetic resonance imaging
container_volume 52
creator Zhang, Min
Young, Geoffrey S.
Chen, Huai
Li, Jing
Qin, Lei
McFaline‐Figueroa, J. Ricardo
Reardon, David A.
Cao, Xinhua
Wu, Xian
Xu, Xiaoyin
description Background Approximately one‐fourth of all cancer metastases are found in the brain. MRI is the primary technique for detection of brain metastasis, planning of radiotherapy, and the monitoring of treatment response. Progress in tumor treatment now requires detection of new or growing metastases at the small subcentimeter size, when these therapies are most effective. Purpose To develop a deep‐learning‐based approach for finding brain metastasis on MRI. Study Type Retrospective. Sequence Axial postcontrast 3D T1‐weighted imaging. Field Strength 1.5T and 3T. Population A total of 361 scans of 121 patients were used to train and test the Faster region‐based convolutional neural network (Faster R‐CNN): 1565 lesions in 270 scans of 73 patients for training; 488 lesions in 91 scans of 48 patients for testing. From the 48 outputs of Faster R‐CNN, 212 lesions in 46 scans of 18 patients were used for training the RUSBoost algorithm (MatLab) and 276 lesions in 45 scans of 30 patients for testing. Assessment Two radiologists diagnosed and supervised annotation of metastases on brain MRI as ground truth. This data were used to produce a 2‐step pipeline consisting of a Faster R‐CNN for detecting abnormal hyperintensity that may represent brain metastasis and a RUSBoost classifier to reduce the number of false‐positive foci detected. Statistical Tests The performance of the algorithm was evaluated by using sensitivity, false‐positive rate, and receiver's operating characteristic (ROC) curves. The detection performance was assessed both per‐metastases and per‐slice. Results Testing on held‐out brain MRI data demonstrated 96% sensitivity and 20 false‐positive metastases per scan. The results showed an 87.1% sensitivity and 0.24 false‐positive metastases per slice. The area under the ROC curve was 0.79. Conclusion Our results showed that deep‐learning‐based computer‐aided detection (CAD) had the potential of detecting brain metastases with high sensitivity and reasonable specificity. Level of Evidence 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:1227–1236.
doi_str_mv 10.1002/jmri.27129
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7487020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377337744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5149-66dbde9e771bf124177257cd077b47aaa80c5ae5c850c034d1426b66ab71cc743</originalsourceid><addsrcrecordid>eNp9kd1KHDEUx4NU6ldv-gBloDcijE0ySc7MTUHX-sWKIO11yGTOapbZZE1mW7zzEXzGPolZV8X2QkhIID9-Oef8CfnM6D6jlH-bzqLb58B4s0Y2meS85LJWH_KdyqpkNYUNspXSlFLaNEJ-JBsVZwqU5Jvk8Ahx_vf-YYwmeueviyMc0A4u-CJMipHxFmNxgYNJeWEqhlAMN1gcRuMy4YuLq7Mdsj4xfcJPz-c2-XX84-fotBxfnpyNDsallUw0pVJd22GDAKydMC4YAJdgOwrQCjDG1NRKg9LWklpaiY4JrlqlTAvMWhDVNvm-8s4X7Qw7i36Iptfz6GYm3ulgnP73xbsbfR1-axA1UE6zYPdZEMPtAtOgZy5Z7HvjMSyS5hVAlbdY_vX1P3QaFtHn9jQXIruqStWZ2ltRNoaUIk5ei2FUL6PRy2j0UzQZ_vK2_Ff0JYsMsBXwx_V4945Kn-epr6SPmB2Y6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442033368</pqid></control><display><type>article</type><title>Deep‐Learning Detection of Cancer Metastases to the Brain on MRI</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Zhang, Min ; Young, Geoffrey S. ; Chen, Huai ; Li, Jing ; Qin, Lei ; McFaline‐Figueroa, J. Ricardo ; Reardon, David A. ; Cao, Xinhua ; Wu, Xian ; Xu, Xiaoyin</creator><creatorcontrib>Zhang, Min ; Young, Geoffrey S. ; Chen, Huai ; Li, Jing ; Qin, Lei ; McFaline‐Figueroa, J. Ricardo ; Reardon, David A. ; Cao, Xinhua ; Wu, Xian ; Xu, Xiaoyin</creatorcontrib><description>Background Approximately one‐fourth of all cancer metastases are found in the brain. MRI is the primary technique for detection of brain metastasis, planning of radiotherapy, and the monitoring of treatment response. Progress in tumor treatment now requires detection of new or growing metastases at the small subcentimeter size, when these therapies are most effective. Purpose To develop a deep‐learning‐based approach for finding brain metastasis on MRI. Study Type Retrospective. Sequence Axial postcontrast 3D T1‐weighted imaging. Field Strength 1.5T and 3T. Population A total of 361 scans of 121 patients were used to train and test the Faster region‐based convolutional neural network (Faster R‐CNN): 1565 lesions in 270 scans of 73 patients for training; 488 lesions in 91 scans of 48 patients for testing. From the 48 outputs of Faster R‐CNN, 212 lesions in 46 scans of 18 patients were used for training the RUSBoost algorithm (MatLab) and 276 lesions in 45 scans of 30 patients for testing. Assessment Two radiologists diagnosed and supervised annotation of metastases on brain MRI as ground truth. This data were used to produce a 2‐step pipeline consisting of a Faster R‐CNN for detecting abnormal hyperintensity that may represent brain metastasis and a RUSBoost classifier to reduce the number of false‐positive foci detected. Statistical Tests The performance of the algorithm was evaluated by using sensitivity, false‐positive rate, and receiver's operating characteristic (ROC) curves. The detection performance was assessed both per‐metastases and per‐slice. Results Testing on held‐out brain MRI data demonstrated 96% sensitivity and 20 false‐positive metastases per scan. The results showed an 87.1% sensitivity and 0.24 false‐positive metastases per slice. The area under the ROC curve was 0.79. Conclusion Our results showed that deep‐learning‐based computer‐aided detection (CAD) had the potential of detecting brain metastases with high sensitivity and reasonable specificity. Level of Evidence 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:1227–1236.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27129</identifier><identifier>PMID: 32167652</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Annotations ; Artificial neural networks ; Brain ; Brain - diagnostic imaging ; Brain cancer ; brain metastases ; Brain slice preparation ; Cancer ; Deep Learning ; Faster R‐CNN ; Field strength ; Ground truth ; Humans ; Lesions ; Magnetic Resonance Imaging ; Medical imaging ; Metastases ; Metastasis ; Neoplasms ; Neural networks ; Neuroimaging ; Radiation therapy ; Retrospective Studies ; RUSBoost ; Sensitivity analysis ; Sensitivity and Specificity ; Statistical analysis ; Statistical tests ; Training</subject><ispartof>Journal of magnetic resonance imaging, 2020-10, Vol.52 (4), p.1227-1236</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5149-66dbde9e771bf124177257cd077b47aaa80c5ae5c850c034d1426b66ab71cc743</citedby><cites>FETCH-LOGICAL-c5149-66dbde9e771bf124177257cd077b47aaa80c5ae5c850c034d1426b66ab71cc743</cites><orcidid>0000-0003-0813-7979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.27129$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.27129$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32167652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Young, Geoffrey S.</creatorcontrib><creatorcontrib>Chen, Huai</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>McFaline‐Figueroa, J. Ricardo</creatorcontrib><creatorcontrib>Reardon, David A.</creatorcontrib><creatorcontrib>Cao, Xinhua</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Xu, Xiaoyin</creatorcontrib><title>Deep‐Learning Detection of Cancer Metastases to the Brain on MRI</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Approximately one‐fourth of all cancer metastases are found in the brain. MRI is the primary technique for detection of brain metastasis, planning of radiotherapy, and the monitoring of treatment response. Progress in tumor treatment now requires detection of new or growing metastases at the small subcentimeter size, when these therapies are most effective. Purpose To develop a deep‐learning‐based approach for finding brain metastasis on MRI. Study Type Retrospective. Sequence Axial postcontrast 3D T1‐weighted imaging. Field Strength 1.5T and 3T. Population A total of 361 scans of 121 patients were used to train and test the Faster region‐based convolutional neural network (Faster R‐CNN): 1565 lesions in 270 scans of 73 patients for training; 488 lesions in 91 scans of 48 patients for testing. From the 48 outputs of Faster R‐CNN, 212 lesions in 46 scans of 18 patients were used for training the RUSBoost algorithm (MatLab) and 276 lesions in 45 scans of 30 patients for testing. Assessment Two radiologists diagnosed and supervised annotation of metastases on brain MRI as ground truth. This data were used to produce a 2‐step pipeline consisting of a Faster R‐CNN for detecting abnormal hyperintensity that may represent brain metastasis and a RUSBoost classifier to reduce the number of false‐positive foci detected. Statistical Tests The performance of the algorithm was evaluated by using sensitivity, false‐positive rate, and receiver's operating characteristic (ROC) curves. The detection performance was assessed both per‐metastases and per‐slice. Results Testing on held‐out brain MRI data demonstrated 96% sensitivity and 20 false‐positive metastases per scan. The results showed an 87.1% sensitivity and 0.24 false‐positive metastases per slice. The area under the ROC curve was 0.79. Conclusion Our results showed that deep‐learning‐based computer‐aided detection (CAD) had the potential of detecting brain metastases with high sensitivity and reasonable specificity. Level of Evidence 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:1227–1236.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain cancer</subject><subject>brain metastases</subject><subject>Brain slice preparation</subject><subject>Cancer</subject><subject>Deep Learning</subject><subject>Faster R‐CNN</subject><subject>Field strength</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Lesions</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Neoplasms</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Radiation therapy</subject><subject>Retrospective Studies</subject><subject>RUSBoost</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Training</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1KHDEUx4NU6ldv-gBloDcijE0ySc7MTUHX-sWKIO11yGTOapbZZE1mW7zzEXzGPolZV8X2QkhIID9-Oef8CfnM6D6jlH-bzqLb58B4s0Y2meS85LJWH_KdyqpkNYUNspXSlFLaNEJ-JBsVZwqU5Jvk8Ahx_vf-YYwmeueviyMc0A4u-CJMipHxFmNxgYNJeWEqhlAMN1gcRuMy4YuLq7Mdsj4xfcJPz-c2-XX84-fotBxfnpyNDsallUw0pVJd22GDAKydMC4YAJdgOwrQCjDG1NRKg9LWklpaiY4JrlqlTAvMWhDVNvm-8s4X7Qw7i36Iptfz6GYm3ulgnP73xbsbfR1-axA1UE6zYPdZEMPtAtOgZy5Z7HvjMSyS5hVAlbdY_vX1P3QaFtHn9jQXIruqStWZ2ltRNoaUIk5ei2FUL6PRy2j0UzQZ_vK2_Ff0JYsMsBXwx_V4945Kn-epr6SPmB2Y6g</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Zhang, Min</creator><creator>Young, Geoffrey S.</creator><creator>Chen, Huai</creator><creator>Li, Jing</creator><creator>Qin, Lei</creator><creator>McFaline‐Figueroa, J. Ricardo</creator><creator>Reardon, David A.</creator><creator>Cao, Xinhua</creator><creator>Wu, Xian</creator><creator>Xu, Xiaoyin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0813-7979</orcidid></search><sort><creationdate>202010</creationdate><title>Deep‐Learning Detection of Cancer Metastases to the Brain on MRI</title><author>Zhang, Min ; Young, Geoffrey S. ; Chen, Huai ; Li, Jing ; Qin, Lei ; McFaline‐Figueroa, J. Ricardo ; Reardon, David A. ; Cao, Xinhua ; Wu, Xian ; Xu, Xiaoyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5149-66dbde9e771bf124177257cd077b47aaa80c5ae5c850c034d1426b66ab71cc743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain cancer</topic><topic>brain metastases</topic><topic>Brain slice preparation</topic><topic>Cancer</topic><topic>Deep Learning</topic><topic>Faster R‐CNN</topic><topic>Field strength</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Lesions</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Neoplasms</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Radiation therapy</topic><topic>Retrospective Studies</topic><topic>RUSBoost</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Young, Geoffrey S.</creatorcontrib><creatorcontrib>Chen, Huai</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>McFaline‐Figueroa, J. Ricardo</creatorcontrib><creatorcontrib>Reardon, David A.</creatorcontrib><creatorcontrib>Cao, Xinhua</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Xu, Xiaoyin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Min</au><au>Young, Geoffrey S.</au><au>Chen, Huai</au><au>Li, Jing</au><au>Qin, Lei</au><au>McFaline‐Figueroa, J. Ricardo</au><au>Reardon, David A.</au><au>Cao, Xinhua</au><au>Wu, Xian</au><au>Xu, Xiaoyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep‐Learning Detection of Cancer Metastases to the Brain on MRI</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2020-10</date><risdate>2020</risdate><volume>52</volume><issue>4</issue><spage>1227</spage><epage>1236</epage><pages>1227-1236</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Approximately one‐fourth of all cancer metastases are found in the brain. MRI is the primary technique for detection of brain metastasis, planning of radiotherapy, and the monitoring of treatment response. Progress in tumor treatment now requires detection of new or growing metastases at the small subcentimeter size, when these therapies are most effective. Purpose To develop a deep‐learning‐based approach for finding brain metastasis on MRI. Study Type Retrospective. Sequence Axial postcontrast 3D T1‐weighted imaging. Field Strength 1.5T and 3T. Population A total of 361 scans of 121 patients were used to train and test the Faster region‐based convolutional neural network (Faster R‐CNN): 1565 lesions in 270 scans of 73 patients for training; 488 lesions in 91 scans of 48 patients for testing. From the 48 outputs of Faster R‐CNN, 212 lesions in 46 scans of 18 patients were used for training the RUSBoost algorithm (MatLab) and 276 lesions in 45 scans of 30 patients for testing. Assessment Two radiologists diagnosed and supervised annotation of metastases on brain MRI as ground truth. This data were used to produce a 2‐step pipeline consisting of a Faster R‐CNN for detecting abnormal hyperintensity that may represent brain metastasis and a RUSBoost classifier to reduce the number of false‐positive foci detected. Statistical Tests The performance of the algorithm was evaluated by using sensitivity, false‐positive rate, and receiver's operating characteristic (ROC) curves. The detection performance was assessed both per‐metastases and per‐slice. Results Testing on held‐out brain MRI data demonstrated 96% sensitivity and 20 false‐positive metastases per scan. The results showed an 87.1% sensitivity and 0.24 false‐positive metastases per slice. The area under the ROC curve was 0.79. Conclusion Our results showed that deep‐learning‐based computer‐aided detection (CAD) had the potential of detecting brain metastases with high sensitivity and reasonable specificity. Level of Evidence 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:1227–1236.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32167652</pmid><doi>10.1002/jmri.27129</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0813-7979</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2020-10, Vol.52 (4), p.1227-1236
issn 1053-1807
1522-2586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7487020
source MEDLINE; Wiley Online Library All Journals
subjects Algorithms
Annotations
Artificial neural networks
Brain
Brain - diagnostic imaging
Brain cancer
brain metastases
Brain slice preparation
Cancer
Deep Learning
Faster R‐CNN
Field strength
Ground truth
Humans
Lesions
Magnetic Resonance Imaging
Medical imaging
Metastases
Metastasis
Neoplasms
Neural networks
Neuroimaging
Radiation therapy
Retrospective Studies
RUSBoost
Sensitivity analysis
Sensitivity and Specificity
Statistical analysis
Statistical tests
Training
title Deep‐Learning Detection of Cancer Metastases to the Brain on MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%E2%80%90Learning%20Detection%20of%20Cancer%20Metastases%20to%20the%20Brain%20on%20MRI&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Zhang,%20Min&rft.date=2020-10&rft.volume=52&rft.issue=4&rft.spage=1227&rft.epage=1236&rft.pages=1227-1236&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27129&rft_dat=%3Cproquest_pubme%3E2377337744%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442033368&rft_id=info:pmid/32167652&rfr_iscdi=true