Genomic plasticity of pathogenic Escherichia coli mediates D-serine tolerance via multiple adaptive mechanisms

The molecular environment of the host can have profound effects on the behavior of resident bacterial species. We recently established how the sensing and response of enterohemorrhagic Escherichia coli (EHEC) to D-serine (D-Ser) resulted in down-regulation of type 3 secretion system-dependent coloni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-09, Vol.117 (36), p.22484-22493
Hauptverfasser: O’Boyle, Nicky, Connolly, James P. R., Tucker, Nicholas P., Roe, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22493
container_issue 36
container_start_page 22484
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator O’Boyle, Nicky
Connolly, James P. R.
Tucker, Nicholas P.
Roe, Andrew J.
description The molecular environment of the host can have profound effects on the behavior of resident bacterial species. We recently established how the sensing and response of enterohemorrhagic Escherichia coli (EHEC) to D-serine (D-Ser) resulted in down-regulation of type 3 secretion system-dependent colonization, thereby avoiding unfavorable environments abundant in this toxic metabolite. However, this model ignores a key determinant of the success of bacterial pathogens, adaptive evolution. In this study, we have explored the adaptation of EHEC to D-Ser and its consequences for pathogenesis. We rapidly isolated multiple, independent, EHEC mutants whose growth was no longer compromised in the presence of D-Ser. Through a combination of whole-genome sequencing and transcriptomics, we showed that tolerance could be attributed to disruption of one of two D-Ser transporters and/or activation of a previously nonfunctional D-Ser deaminase. While the implication of cytoplasmic transport in D-Ser toxicity was unsurprising, disruption of a single transporter, CycA, was sufficient to completely overcome the repression of type 3 secretion system activity normally associated with exposure to D-Ser. Despite the fact that this reveals a mechanism by which evolution could drive a pathogen to colonize new niches, interrogation of sequenced E. coli O157:H7 genomes showed a high level of CycA conservation, highlighting a strong selective pressure for functionality. Collectively, these data show that CycA is a critically important conduit for D-Ser uptake that is central to the niche restriction of EHEC.
doi_str_mv 10.1073/pnas.2004977117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969155</jstor_id><sourcerecordid>26969155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-311ec8f5142863a043640c0266c3acfba0823791ae0874318b48a4f3a62fb07f3</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxYMo9llduxIG3LiZ9ubj5WMjSFtboeBG1-G-NNPJYyYZk8yD_vemvFKxq7s4v3O49x5CPlI4o6D4-RKxnDEAYZSiVL0iGwqG9lIYeE02AEz1WjBxQt6VsgcAs9XwlpxwpoUGxTYkXvuY5uC6ZcJSgwv1oUtDt2Ad072PTbgqbvQ5uDFg59IUutnfBay-dJd9aUL0XU2Tzxid7w4NmtephmXyHd7hUsPBN4cbMYYyl_fkzYBT8R-e5in5_f3q18VNf_vz-sfFt9veCQa155R6p4ctFUxLjiC4FOCASek4umGHoBlXhqIHrQSneic0ioGjZMMO1MBPyddj7rLu2r7Ox5pxsksOM-YHmzDY_5UYRnufDlYJLZWULeDLU0BOf1Zfqp1DcX6aMPq0FssEV-2zyoiGfn6B7tOaYzuvUUJIRbkxjTo_Ui6nUrIfnpehYB-7tI9d2n9dNseno2NfasrPOJNGGrrd8r8aN5wq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444671399</pqid></control><display><type>article</type><title>Genomic plasticity of pathogenic Escherichia coli mediates D-serine tolerance via multiple adaptive mechanisms</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>O’Boyle, Nicky ; Connolly, James P. R. ; Tucker, Nicholas P. ; Roe, Andrew J.</creator><creatorcontrib>O’Boyle, Nicky ; Connolly, James P. R. ; Tucker, Nicholas P. ; Roe, Andrew J.</creatorcontrib><description>The molecular environment of the host can have profound effects on the behavior of resident bacterial species. We recently established how the sensing and response of enterohemorrhagic Escherichia coli (EHEC) to D-serine (D-Ser) resulted in down-regulation of type 3 secretion system-dependent colonization, thereby avoiding unfavorable environments abundant in this toxic metabolite. However, this model ignores a key determinant of the success of bacterial pathogens, adaptive evolution. In this study, we have explored the adaptation of EHEC to D-Ser and its consequences for pathogenesis. We rapidly isolated multiple, independent, EHEC mutants whose growth was no longer compromised in the presence of D-Ser. Through a combination of whole-genome sequencing and transcriptomics, we showed that tolerance could be attributed to disruption of one of two D-Ser transporters and/or activation of a previously nonfunctional D-Ser deaminase. While the implication of cytoplasmic transport in D-Ser toxicity was unsurprising, disruption of a single transporter, CycA, was sufficient to completely overcome the repression of type 3 secretion system activity normally associated with exposure to D-Ser. Despite the fact that this reveals a mechanism by which evolution could drive a pathogen to colonize new niches, interrogation of sequenced E. coli O157:H7 genomes showed a high level of CycA conservation, highlighting a strong selective pressure for functionality. Collectively, these data show that CycA is a critically important conduit for D-Ser uptake that is central to the niche restriction of EHEC.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2004977117</identifier><identifier>PMID: 32848072</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Biological Sciences ; Colonization ; D-Serine ; Disruption ; E coli ; Escherichia coli ; Evolution ; Evolution &amp; development ; Gene sequencing ; Genomes ; Interrogation ; Metabolites ; Niches ; Pathogenesis ; Pathogens ; Secretion ; Toxicity ; Whole genome sequencing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (36), p.22484-22493</ispartof><rights>Copyright National Academy of Sciences Sep 8, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-311ec8f5142863a043640c0266c3acfba0823791ae0874318b48a4f3a62fb07f3</citedby><cites>FETCH-LOGICAL-c420t-311ec8f5142863a043640c0266c3acfba0823791ae0874318b48a4f3a62fb07f3</cites><orcidid>0000-0003-3698-6134 ; 0000-0002-8669-7237 ; 0000-0002-0394-3413 ; 0000-0002-6331-3704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969155$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969155$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>O’Boyle, Nicky</creatorcontrib><creatorcontrib>Connolly, James P. R.</creatorcontrib><creatorcontrib>Tucker, Nicholas P.</creatorcontrib><creatorcontrib>Roe, Andrew J.</creatorcontrib><title>Genomic plasticity of pathogenic Escherichia coli mediates D-serine tolerance via multiple adaptive mechanisms</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The molecular environment of the host can have profound effects on the behavior of resident bacterial species. We recently established how the sensing and response of enterohemorrhagic Escherichia coli (EHEC) to D-serine (D-Ser) resulted in down-regulation of type 3 secretion system-dependent colonization, thereby avoiding unfavorable environments abundant in this toxic metabolite. However, this model ignores a key determinant of the success of bacterial pathogens, adaptive evolution. In this study, we have explored the adaptation of EHEC to D-Ser and its consequences for pathogenesis. We rapidly isolated multiple, independent, EHEC mutants whose growth was no longer compromised in the presence of D-Ser. Through a combination of whole-genome sequencing and transcriptomics, we showed that tolerance could be attributed to disruption of one of two D-Ser transporters and/or activation of a previously nonfunctional D-Ser deaminase. While the implication of cytoplasmic transport in D-Ser toxicity was unsurprising, disruption of a single transporter, CycA, was sufficient to completely overcome the repression of type 3 secretion system activity normally associated with exposure to D-Ser. Despite the fact that this reveals a mechanism by which evolution could drive a pathogen to colonize new niches, interrogation of sequenced E. coli O157:H7 genomes showed a high level of CycA conservation, highlighting a strong selective pressure for functionality. Collectively, these data show that CycA is a critically important conduit for D-Ser uptake that is central to the niche restriction of EHEC.</description><subject>Biological Sciences</subject><subject>Colonization</subject><subject>D-Serine</subject><subject>Disruption</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Interrogation</subject><subject>Metabolites</subject><subject>Niches</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Secretion</subject><subject>Toxicity</subject><subject>Whole genome sequencing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rFTEUxYMo9llduxIG3LiZ9ubj5WMjSFtboeBG1-G-NNPJYyYZk8yD_vemvFKxq7s4v3O49x5CPlI4o6D4-RKxnDEAYZSiVL0iGwqG9lIYeE02AEz1WjBxQt6VsgcAs9XwlpxwpoUGxTYkXvuY5uC6ZcJSgwv1oUtDt2Ad072PTbgqbvQ5uDFg59IUutnfBay-dJd9aUL0XU2Tzxid7w4NmtephmXyHd7hUsPBN4cbMYYyl_fkzYBT8R-e5in5_f3q18VNf_vz-sfFt9veCQa155R6p4ctFUxLjiC4FOCASek4umGHoBlXhqIHrQSneic0ioGjZMMO1MBPyddj7rLu2r7Ox5pxsksOM-YHmzDY_5UYRnufDlYJLZWULeDLU0BOf1Zfqp1DcX6aMPq0FssEV-2zyoiGfn6B7tOaYzuvUUJIRbkxjTo_Ui6nUrIfnpehYB-7tI9d2n9dNseno2NfasrPOJNGGrrd8r8aN5wq</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>O’Boyle, Nicky</creator><creator>Connolly, James P. R.</creator><creator>Tucker, Nicholas P.</creator><creator>Roe, Andrew J.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3698-6134</orcidid><orcidid>https://orcid.org/0000-0002-8669-7237</orcidid><orcidid>https://orcid.org/0000-0002-0394-3413</orcidid><orcidid>https://orcid.org/0000-0002-6331-3704</orcidid></search><sort><creationdate>20200908</creationdate><title>Genomic plasticity of pathogenic Escherichia coli mediates D-serine tolerance via multiple adaptive mechanisms</title><author>O’Boyle, Nicky ; Connolly, James P. R. ; Tucker, Nicholas P. ; Roe, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-311ec8f5142863a043640c0266c3acfba0823791ae0874318b48a4f3a62fb07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences</topic><topic>Colonization</topic><topic>D-Serine</topic><topic>Disruption</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Interrogation</topic><topic>Metabolites</topic><topic>Niches</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Secretion</topic><topic>Toxicity</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Boyle, Nicky</creatorcontrib><creatorcontrib>Connolly, James P. R.</creatorcontrib><creatorcontrib>Tucker, Nicholas P.</creatorcontrib><creatorcontrib>Roe, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Boyle, Nicky</au><au>Connolly, James P. R.</au><au>Tucker, Nicholas P.</au><au>Roe, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic plasticity of pathogenic Escherichia coli mediates D-serine tolerance via multiple adaptive mechanisms</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-09-08</date><risdate>2020</risdate><volume>117</volume><issue>36</issue><spage>22484</spage><epage>22493</epage><pages>22484-22493</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The molecular environment of the host can have profound effects on the behavior of resident bacterial species. We recently established how the sensing and response of enterohemorrhagic Escherichia coli (EHEC) to D-serine (D-Ser) resulted in down-regulation of type 3 secretion system-dependent colonization, thereby avoiding unfavorable environments abundant in this toxic metabolite. However, this model ignores a key determinant of the success of bacterial pathogens, adaptive evolution. In this study, we have explored the adaptation of EHEC to D-Ser and its consequences for pathogenesis. We rapidly isolated multiple, independent, EHEC mutants whose growth was no longer compromised in the presence of D-Ser. Through a combination of whole-genome sequencing and transcriptomics, we showed that tolerance could be attributed to disruption of one of two D-Ser transporters and/or activation of a previously nonfunctional D-Ser deaminase. While the implication of cytoplasmic transport in D-Ser toxicity was unsurprising, disruption of a single transporter, CycA, was sufficient to completely overcome the repression of type 3 secretion system activity normally associated with exposure to D-Ser. Despite the fact that this reveals a mechanism by which evolution could drive a pathogen to colonize new niches, interrogation of sequenced E. coli O157:H7 genomes showed a high level of CycA conservation, highlighting a strong selective pressure for functionality. Collectively, these data show that CycA is a critically important conduit for D-Ser uptake that is central to the niche restriction of EHEC.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32848072</pmid><doi>10.1073/pnas.2004977117</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3698-6134</orcidid><orcidid>https://orcid.org/0000-0002-8669-7237</orcidid><orcidid>https://orcid.org/0000-0002-0394-3413</orcidid><orcidid>https://orcid.org/0000-0002-6331-3704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-09, Vol.117 (36), p.22484-22493
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486766
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Colonization
D-Serine
Disruption
E coli
Escherichia coli
Evolution
Evolution & development
Gene sequencing
Genomes
Interrogation
Metabolites
Niches
Pathogenesis
Pathogens
Secretion
Toxicity
Whole genome sequencing
title Genomic plasticity of pathogenic Escherichia coli mediates D-serine tolerance via multiple adaptive mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20plasticity%20of%20pathogenic%20Escherichia%20coli%20mediates%20D-serine%20tolerance%20via%20multiple%20adaptive%20mechanisms&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=O%E2%80%99Boyle,%20Nicky&rft.date=2020-09-08&rft.volume=117&rft.issue=36&rft.spage=22484&rft.epage=22493&rft.pages=22484-22493&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2004977117&rft_dat=%3Cjstor_pubme%3E26969155%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444671399&rft_id=info:pmid/32848072&rft_jstor_id=26969155&rfr_iscdi=true