Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons

Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cell reports 2020-09, Vol.15 (3), p.629-645
Hauptverfasser: Kumar, Manoj, Acevedo-Cintrón, Jesús, Jhaldiyal, Aanishaa, Wang, Hu, Andrabi, Shaida A., Eacker, Stephen, Karuppagounder, Senthilkumar S., Brahmachari, Saurav, Chen, Rong, Kim, Hyesoo, Ko, Han Seok, Dawson, Valina L., Dawson, Ted M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 3
container_start_page 629
container_title Stem cell reports
container_volume 15
creator Kumar, Manoj
Acevedo-Cintrón, Jesús
Jhaldiyal, Aanishaa
Wang, Hu
Andrabi, Shaida A.
Eacker, Stephen
Karuppagounder, Senthilkumar S.
Brahmachari, Saurav
Chen, Rong
Kim, Hyesoo
Ko, Han Seok
Dawson, Valina L.
Dawson, Ted M.
description Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons. [Display omitted] •Human DA neuron loss of PARKIN leads to increased PARIS and decreased PGC-1α•Human DA neuron PARKIN loss leads to reduced mitochondrial autophagy and biogenesis•Decreased mitochondrial biogenesis drives the mitochondrial defects in DA neurons•PARIS is a key mediator of the mitochondrial defects in DA neurons lacking PARKIN In this article, Dawson and colleagues show that human DA neurons lacking PARKIN exhibit mitochondrial defects that are driven by the upregulation of PARIS, downregulation of PGC-1α, and decreased mitochondrial biogenesis. While mitophagy is impaired in human DA neurons lacking PARKIN, it does not appear to contribute to the mitochondrial deficits.
doi_str_mv 10.1016/j.stemcr.2020.07.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213671120302903</els_id><sourcerecordid>2434471263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-8709eae9b0473165cee05f4d14a843bf84bd7e234ce845ff7f8bc28423690a4c3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1UBGjLP6hQjlyS-mM2Ti5IW7YtqHwJtWfLcSbgVWJv7WSl_vt6u5RCD_hiS_O-M-P3IeQDowWjrPy4KuKIgwkFp5wWVBaUiT1yxDkTeSkZe_fifUiOY1zRdOqacWAH5FBwWc-B8yPiltihGWNmXXZtR28evWuD1X32yfoHdBhtzJbBbvC_8qIfMejRevfHe7e4_3Z5k6du1lh0Y3YxDdplS7_Wg3WY3eAUkvQ92e90H_H46Z6RH18-fz-_yK9uv16eL65yA6UY80rSGjXWDQUpWDk3iHTeQctAVyCaroKmlcgFGKxg3nWyqxrDK-CirKkGI2bkbNd3PTUDtiZtFHSv1sEOOvxSXlv1uuLso3rwGyWhKrfJzcjpU4Pgf04YRzXYaLDvtUM_RcVBAEjGS5GksJOa4GMM2D2PYVRtaamV2tFSW1qKSpVoJdvJyxWfTX_Z_PsDpqA2FoOK22gNtjYkZKr19u0JvwEZB6nU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434471263</pqid></control><display><type>article</type><title>Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kumar, Manoj ; Acevedo-Cintrón, Jesús ; Jhaldiyal, Aanishaa ; Wang, Hu ; Andrabi, Shaida A. ; Eacker, Stephen ; Karuppagounder, Senthilkumar S. ; Brahmachari, Saurav ; Chen, Rong ; Kim, Hyesoo ; Ko, Han Seok ; Dawson, Valina L. ; Dawson, Ted M.</creator><creatorcontrib>Kumar, Manoj ; Acevedo-Cintrón, Jesús ; Jhaldiyal, Aanishaa ; Wang, Hu ; Andrabi, Shaida A. ; Eacker, Stephen ; Karuppagounder, Senthilkumar S. ; Brahmachari, Saurav ; Chen, Rong ; Kim, Hyesoo ; Ko, Han Seok ; Dawson, Valina L. ; Dawson, Ted M.</creatorcontrib><description>Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons. [Display omitted] •Human DA neuron loss of PARKIN leads to increased PARIS and decreased PGC-1α•Human DA neuron PARKIN loss leads to reduced mitochondrial autophagy and biogenesis•Decreased mitochondrial biogenesis drives the mitochondrial defects in DA neurons•PARIS is a key mediator of the mitochondrial defects in DA neurons lacking PARKIN In this article, Dawson and colleagues show that human DA neurons lacking PARKIN exhibit mitochondrial defects that are driven by the upregulation of PARIS, downregulation of PGC-1α, and decreased mitochondrial biogenesis. While mitophagy is impaired in human DA neurons lacking PARKIN, it does not appear to contribute to the mitochondrial deficits.</description><identifier>ISSN: 2213-6711</identifier><identifier>EISSN: 2213-6711</identifier><identifier>DOI: 10.1016/j.stemcr.2020.07.013</identifier><identifier>PMID: 32795422</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Autophagy ; Biomarkers - metabolism ; Cell Differentiation ; Cell Respiration ; Cells, Cultured ; dopamine ; Dopaminergic Neurons - metabolism ; Human Embryonic Stem Cells - metabolism ; human IPSC ; Humans ; isogenic ; Mitochondria - metabolism ; mitochondrial biogenesis ; Mitophagy ; Mutation - genetics ; Neurons - metabolism ; Organelle Biogenesis ; PARIS ; PARKIN ; Parkinson’s disease ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; PGC-1α ; Repressor Proteins - metabolism ; Ubiquitin-Protein Ligases - deficiency ; Ubiquitin-Protein Ligases - metabolism ; ZNF746</subject><ispartof>Stem cell reports, 2020-09, Vol.15 (3), p.629-645</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-8709eae9b0473165cee05f4d14a843bf84bd7e234ce845ff7f8bc28423690a4c3</citedby><cites>FETCH-LOGICAL-c463t-8709eae9b0473165cee05f4d14a843bf84bd7e234ce845ff7f8bc28423690a4c3</cites><orcidid>0000-0002-6459-0893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486221/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486221/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32795422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Acevedo-Cintrón, Jesús</creatorcontrib><creatorcontrib>Jhaldiyal, Aanishaa</creatorcontrib><creatorcontrib>Wang, Hu</creatorcontrib><creatorcontrib>Andrabi, Shaida A.</creatorcontrib><creatorcontrib>Eacker, Stephen</creatorcontrib><creatorcontrib>Karuppagounder, Senthilkumar S.</creatorcontrib><creatorcontrib>Brahmachari, Saurav</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Kim, Hyesoo</creatorcontrib><creatorcontrib>Ko, Han Seok</creatorcontrib><creatorcontrib>Dawson, Valina L.</creatorcontrib><creatorcontrib>Dawson, Ted M.</creatorcontrib><title>Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons</title><title>Stem cell reports</title><addtitle>Stem Cell Reports</addtitle><description>Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons. [Display omitted] •Human DA neuron loss of PARKIN leads to increased PARIS and decreased PGC-1α•Human DA neuron PARKIN loss leads to reduced mitochondrial autophagy and biogenesis•Decreased mitochondrial biogenesis drives the mitochondrial defects in DA neurons•PARIS is a key mediator of the mitochondrial defects in DA neurons lacking PARKIN In this article, Dawson and colleagues show that human DA neurons lacking PARKIN exhibit mitochondrial defects that are driven by the upregulation of PARIS, downregulation of PGC-1α, and decreased mitochondrial biogenesis. While mitophagy is impaired in human DA neurons lacking PARKIN, it does not appear to contribute to the mitochondrial deficits.</description><subject>Autophagy</subject><subject>Biomarkers - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell Respiration</subject><subject>Cells, Cultured</subject><subject>dopamine</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Human Embryonic Stem Cells - metabolism</subject><subject>human IPSC</subject><subject>Humans</subject><subject>isogenic</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial biogenesis</subject><subject>Mitophagy</subject><subject>Mutation - genetics</subject><subject>Neurons - metabolism</subject><subject>Organelle Biogenesis</subject><subject>PARIS</subject><subject>PARKIN</subject><subject>Parkinson’s disease</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>PGC-1α</subject><subject>Repressor Proteins - metabolism</subject><subject>Ubiquitin-Protein Ligases - deficiency</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>ZNF746</subject><issn>2213-6711</issn><issn>2213-6711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQhi1UBGjLP6hQjlyS-mM2Ti5IW7YtqHwJtWfLcSbgVWJv7WSl_vt6u5RCD_hiS_O-M-P3IeQDowWjrPy4KuKIgwkFp5wWVBaUiT1yxDkTeSkZe_fifUiOY1zRdOqacWAH5FBwWc-B8yPiltihGWNmXXZtR28evWuD1X32yfoHdBhtzJbBbvC_8qIfMejRevfHe7e4_3Z5k6du1lh0Y3YxDdplS7_Wg3WY3eAUkvQ92e90H_H46Z6RH18-fz-_yK9uv16eL65yA6UY80rSGjXWDQUpWDk3iHTeQctAVyCaroKmlcgFGKxg3nWyqxrDK-CirKkGI2bkbNd3PTUDtiZtFHSv1sEOOvxSXlv1uuLso3rwGyWhKrfJzcjpU4Pgf04YRzXYaLDvtUM_RcVBAEjGS5GksJOa4GMM2D2PYVRtaamV2tFSW1qKSpVoJdvJyxWfTX_Z_PsDpqA2FoOK22gNtjYkZKr19u0JvwEZB6nU</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Kumar, Manoj</creator><creator>Acevedo-Cintrón, Jesús</creator><creator>Jhaldiyal, Aanishaa</creator><creator>Wang, Hu</creator><creator>Andrabi, Shaida A.</creator><creator>Eacker, Stephen</creator><creator>Karuppagounder, Senthilkumar S.</creator><creator>Brahmachari, Saurav</creator><creator>Chen, Rong</creator><creator>Kim, Hyesoo</creator><creator>Ko, Han Seok</creator><creator>Dawson, Valina L.</creator><creator>Dawson, Ted M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6459-0893</orcidid></search><sort><creationdate>20200908</creationdate><title>Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons</title><author>Kumar, Manoj ; Acevedo-Cintrón, Jesús ; Jhaldiyal, Aanishaa ; Wang, Hu ; Andrabi, Shaida A. ; Eacker, Stephen ; Karuppagounder, Senthilkumar S. ; Brahmachari, Saurav ; Chen, Rong ; Kim, Hyesoo ; Ko, Han Seok ; Dawson, Valina L. ; Dawson, Ted M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-8709eae9b0473165cee05f4d14a843bf84bd7e234ce845ff7f8bc28423690a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autophagy</topic><topic>Biomarkers - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell Respiration</topic><topic>Cells, Cultured</topic><topic>dopamine</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Human Embryonic Stem Cells - metabolism</topic><topic>human IPSC</topic><topic>Humans</topic><topic>isogenic</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial biogenesis</topic><topic>Mitophagy</topic><topic>Mutation - genetics</topic><topic>Neurons - metabolism</topic><topic>Organelle Biogenesis</topic><topic>PARIS</topic><topic>PARKIN</topic><topic>Parkinson’s disease</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>PGC-1α</topic><topic>Repressor Proteins - metabolism</topic><topic>Ubiquitin-Protein Ligases - deficiency</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>ZNF746</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Acevedo-Cintrón, Jesús</creatorcontrib><creatorcontrib>Jhaldiyal, Aanishaa</creatorcontrib><creatorcontrib>Wang, Hu</creatorcontrib><creatorcontrib>Andrabi, Shaida A.</creatorcontrib><creatorcontrib>Eacker, Stephen</creatorcontrib><creatorcontrib>Karuppagounder, Senthilkumar S.</creatorcontrib><creatorcontrib>Brahmachari, Saurav</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Kim, Hyesoo</creatorcontrib><creatorcontrib>Ko, Han Seok</creatorcontrib><creatorcontrib>Dawson, Valina L.</creatorcontrib><creatorcontrib>Dawson, Ted M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manoj</au><au>Acevedo-Cintrón, Jesús</au><au>Jhaldiyal, Aanishaa</au><au>Wang, Hu</au><au>Andrabi, Shaida A.</au><au>Eacker, Stephen</au><au>Karuppagounder, Senthilkumar S.</au><au>Brahmachari, Saurav</au><au>Chen, Rong</au><au>Kim, Hyesoo</au><au>Ko, Han Seok</au><au>Dawson, Valina L.</au><au>Dawson, Ted M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons</atitle><jtitle>Stem cell reports</jtitle><addtitle>Stem Cell Reports</addtitle><date>2020-09-08</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>629</spage><epage>645</epage><pages>629-645</pages><issn>2213-6711</issn><eissn>2213-6711</eissn><abstract>Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons. [Display omitted] •Human DA neuron loss of PARKIN leads to increased PARIS and decreased PGC-1α•Human DA neuron PARKIN loss leads to reduced mitochondrial autophagy and biogenesis•Decreased mitochondrial biogenesis drives the mitochondrial defects in DA neurons•PARIS is a key mediator of the mitochondrial defects in DA neurons lacking PARKIN In this article, Dawson and colleagues show that human DA neurons lacking PARKIN exhibit mitochondrial defects that are driven by the upregulation of PARIS, downregulation of PGC-1α, and decreased mitochondrial biogenesis. While mitophagy is impaired in human DA neurons lacking PARKIN, it does not appear to contribute to the mitochondrial deficits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32795422</pmid><doi>10.1016/j.stemcr.2020.07.013</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6459-0893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-6711
ispartof Stem cell reports, 2020-09, Vol.15 (3), p.629-645
issn 2213-6711
2213-6711
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486221
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Autophagy
Biomarkers - metabolism
Cell Differentiation
Cell Respiration
Cells, Cultured
dopamine
Dopaminergic Neurons - metabolism
Human Embryonic Stem Cells - metabolism
human IPSC
Humans
isogenic
Mitochondria - metabolism
mitochondrial biogenesis
Mitophagy
Mutation - genetics
Neurons - metabolism
Organelle Biogenesis
PARIS
PARKIN
Parkinson’s disease
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
PGC-1α
Repressor Proteins - metabolism
Ubiquitin-Protein Ligases - deficiency
Ubiquitin-Protein Ligases - metabolism
ZNF746
title Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20in%20Mitochondrial%20Biogenesis%20Drive%20Mitochondrial%20Alterations%20in%20PARKIN-Deficient%20Human%20Dopamine%20Neurons&rft.jtitle=Stem%20cell%20reports&rft.au=Kumar,%20Manoj&rft.date=2020-09-08&rft.volume=15&rft.issue=3&rft.spage=629&rft.epage=645&rft.pages=629-645&rft.issn=2213-6711&rft.eissn=2213-6711&rft_id=info:doi/10.1016/j.stemcr.2020.07.013&rft_dat=%3Cproquest_pubme%3E2434471263%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434471263&rft_id=info:pmid/32795422&rft_els_id=S2213671120302903&rfr_iscdi=true