Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons
Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have bee...
Gespeichert in:
Veröffentlicht in: | Stem cell reports 2020-09, Vol.15 (3), p.629-645 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 3 |
container_start_page | 629 |
container_title | Stem cell reports |
container_volume | 15 |
creator | Kumar, Manoj Acevedo-Cintrón, Jesús Jhaldiyal, Aanishaa Wang, Hu Andrabi, Shaida A. Eacker, Stephen Karuppagounder, Senthilkumar S. Brahmachari, Saurav Chen, Rong Kim, Hyesoo Ko, Han Seok Dawson, Valina L. Dawson, Ted M. |
description | Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons.
[Display omitted]
•Human DA neuron loss of PARKIN leads to increased PARIS and decreased PGC-1α•Human DA neuron PARKIN loss leads to reduced mitochondrial autophagy and biogenesis•Decreased mitochondrial biogenesis drives the mitochondrial defects in DA neurons•PARIS is a key mediator of the mitochondrial defects in DA neurons lacking PARKIN
In this article, Dawson and colleagues show that human DA neurons lacking PARKIN exhibit mitochondrial defects that are driven by the upregulation of PARIS, downregulation of PGC-1α, and decreased mitochondrial biogenesis. While mitophagy is impaired in human DA neurons lacking PARKIN, it does not appear to contribute to the mitochondrial deficits. |
doi_str_mv | 10.1016/j.stemcr.2020.07.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213671120302903</els_id><sourcerecordid>2434471263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-8709eae9b0473165cee05f4d14a843bf84bd7e234ce845ff7f8bc28423690a4c3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1UBGjLP6hQjlyS-mM2Ti5IW7YtqHwJtWfLcSbgVWJv7WSl_vt6u5RCD_hiS_O-M-P3IeQDowWjrPy4KuKIgwkFp5wWVBaUiT1yxDkTeSkZe_fifUiOY1zRdOqacWAH5FBwWc-B8yPiltihGWNmXXZtR28evWuD1X32yfoHdBhtzJbBbvC_8qIfMejRevfHe7e4_3Z5k6du1lh0Y3YxDdplS7_Wg3WY3eAUkvQ92e90H_H46Z6RH18-fz-_yK9uv16eL65yA6UY80rSGjXWDQUpWDk3iHTeQctAVyCaroKmlcgFGKxg3nWyqxrDK-CirKkGI2bkbNd3PTUDtiZtFHSv1sEOOvxSXlv1uuLso3rwGyWhKrfJzcjpU4Pgf04YRzXYaLDvtUM_RcVBAEjGS5GksJOa4GMM2D2PYVRtaamV2tFSW1qKSpVoJdvJyxWfTX_Z_PsDpqA2FoOK22gNtjYkZKr19u0JvwEZB6nU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434471263</pqid></control><display><type>article</type><title>Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kumar, Manoj ; Acevedo-Cintrón, Jesús ; Jhaldiyal, Aanishaa ; Wang, Hu ; Andrabi, Shaida A. ; Eacker, Stephen ; Karuppagounder, Senthilkumar S. ; Brahmachari, Saurav ; Chen, Rong ; Kim, Hyesoo ; Ko, Han Seok ; Dawson, Valina L. ; Dawson, Ted M.</creator><creatorcontrib>Kumar, Manoj ; Acevedo-Cintrón, Jesús ; Jhaldiyal, Aanishaa ; Wang, Hu ; Andrabi, Shaida A. ; Eacker, Stephen ; Karuppagounder, Senthilkumar S. ; Brahmachari, Saurav ; Chen, Rong ; Kim, Hyesoo ; Ko, Han Seok ; Dawson, Valina L. ; Dawson, Ted M.</creatorcontrib><description>Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons.
[Display omitted]
•Human DA neuron loss of PARKIN leads to increased PARIS and decreased PGC-1α•Human DA neuron PARKIN loss leads to reduced mitochondrial autophagy and biogenesis•Decreased mitochondrial biogenesis drives the mitochondrial defects in DA neurons•PARIS is a key mediator of the mitochondrial defects in DA neurons lacking PARKIN
In this article, Dawson and colleagues show that human DA neurons lacking PARKIN exhibit mitochondrial defects that are driven by the upregulation of PARIS, downregulation of PGC-1α, and decreased mitochondrial biogenesis. While mitophagy is impaired in human DA neurons lacking PARKIN, it does not appear to contribute to the mitochondrial deficits.</description><identifier>ISSN: 2213-6711</identifier><identifier>EISSN: 2213-6711</identifier><identifier>DOI: 10.1016/j.stemcr.2020.07.013</identifier><identifier>PMID: 32795422</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Autophagy ; Biomarkers - metabolism ; Cell Differentiation ; Cell Respiration ; Cells, Cultured ; dopamine ; Dopaminergic Neurons - metabolism ; Human Embryonic Stem Cells - metabolism ; human IPSC ; Humans ; isogenic ; Mitochondria - metabolism ; mitochondrial biogenesis ; Mitophagy ; Mutation - genetics ; Neurons - metabolism ; Organelle Biogenesis ; PARIS ; PARKIN ; Parkinson’s disease ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; PGC-1α ; Repressor Proteins - metabolism ; Ubiquitin-Protein Ligases - deficiency ; Ubiquitin-Protein Ligases - metabolism ; ZNF746</subject><ispartof>Stem cell reports, 2020-09, Vol.15 (3), p.629-645</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-8709eae9b0473165cee05f4d14a843bf84bd7e234ce845ff7f8bc28423690a4c3</citedby><cites>FETCH-LOGICAL-c463t-8709eae9b0473165cee05f4d14a843bf84bd7e234ce845ff7f8bc28423690a4c3</cites><orcidid>0000-0002-6459-0893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486221/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486221/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32795422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Acevedo-Cintrón, Jesús</creatorcontrib><creatorcontrib>Jhaldiyal, Aanishaa</creatorcontrib><creatorcontrib>Wang, Hu</creatorcontrib><creatorcontrib>Andrabi, Shaida A.</creatorcontrib><creatorcontrib>Eacker, Stephen</creatorcontrib><creatorcontrib>Karuppagounder, Senthilkumar S.</creatorcontrib><creatorcontrib>Brahmachari, Saurav</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Kim, Hyesoo</creatorcontrib><creatorcontrib>Ko, Han Seok</creatorcontrib><creatorcontrib>Dawson, Valina L.</creatorcontrib><creatorcontrib>Dawson, Ted M.</creatorcontrib><title>Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons</title><title>Stem cell reports</title><addtitle>Stem Cell Reports</addtitle><description>Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons.
[Display omitted]
•Human DA neuron loss of PARKIN leads to increased PARIS and decreased PGC-1α•Human DA neuron PARKIN loss leads to reduced mitochondrial autophagy and biogenesis•Decreased mitochondrial biogenesis drives the mitochondrial defects in DA neurons•PARIS is a key mediator of the mitochondrial defects in DA neurons lacking PARKIN
In this article, Dawson and colleagues show that human DA neurons lacking PARKIN exhibit mitochondrial defects that are driven by the upregulation of PARIS, downregulation of PGC-1α, and decreased mitochondrial biogenesis. While mitophagy is impaired in human DA neurons lacking PARKIN, it does not appear to contribute to the mitochondrial deficits.</description><subject>Autophagy</subject><subject>Biomarkers - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell Respiration</subject><subject>Cells, Cultured</subject><subject>dopamine</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Human Embryonic Stem Cells - metabolism</subject><subject>human IPSC</subject><subject>Humans</subject><subject>isogenic</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial biogenesis</subject><subject>Mitophagy</subject><subject>Mutation - genetics</subject><subject>Neurons - metabolism</subject><subject>Organelle Biogenesis</subject><subject>PARIS</subject><subject>PARKIN</subject><subject>Parkinson’s disease</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>PGC-1α</subject><subject>Repressor Proteins - metabolism</subject><subject>Ubiquitin-Protein Ligases - deficiency</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>ZNF746</subject><issn>2213-6711</issn><issn>2213-6711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQhi1UBGjLP6hQjlyS-mM2Ti5IW7YtqHwJtWfLcSbgVWJv7WSl_vt6u5RCD_hiS_O-M-P3IeQDowWjrPy4KuKIgwkFp5wWVBaUiT1yxDkTeSkZe_fifUiOY1zRdOqacWAH5FBwWc-B8yPiltihGWNmXXZtR28evWuD1X32yfoHdBhtzJbBbvC_8qIfMejRevfHe7e4_3Z5k6du1lh0Y3YxDdplS7_Wg3WY3eAUkvQ92e90H_H46Z6RH18-fz-_yK9uv16eL65yA6UY80rSGjXWDQUpWDk3iHTeQctAVyCaroKmlcgFGKxg3nWyqxrDK-CirKkGI2bkbNd3PTUDtiZtFHSv1sEOOvxSXlv1uuLso3rwGyWhKrfJzcjpU4Pgf04YRzXYaLDvtUM_RcVBAEjGS5GksJOa4GMM2D2PYVRtaamV2tFSW1qKSpVoJdvJyxWfTX_Z_PsDpqA2FoOK22gNtjYkZKr19u0JvwEZB6nU</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Kumar, Manoj</creator><creator>Acevedo-Cintrón, Jesús</creator><creator>Jhaldiyal, Aanishaa</creator><creator>Wang, Hu</creator><creator>Andrabi, Shaida A.</creator><creator>Eacker, Stephen</creator><creator>Karuppagounder, Senthilkumar S.</creator><creator>Brahmachari, Saurav</creator><creator>Chen, Rong</creator><creator>Kim, Hyesoo</creator><creator>Ko, Han Seok</creator><creator>Dawson, Valina L.</creator><creator>Dawson, Ted M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6459-0893</orcidid></search><sort><creationdate>20200908</creationdate><title>Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons</title><author>Kumar, Manoj ; Acevedo-Cintrón, Jesús ; Jhaldiyal, Aanishaa ; Wang, Hu ; Andrabi, Shaida A. ; Eacker, Stephen ; Karuppagounder, Senthilkumar S. ; Brahmachari, Saurav ; Chen, Rong ; Kim, Hyesoo ; Ko, Han Seok ; Dawson, Valina L. ; Dawson, Ted M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-8709eae9b0473165cee05f4d14a843bf84bd7e234ce845ff7f8bc28423690a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autophagy</topic><topic>Biomarkers - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell Respiration</topic><topic>Cells, Cultured</topic><topic>dopamine</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Human Embryonic Stem Cells - metabolism</topic><topic>human IPSC</topic><topic>Humans</topic><topic>isogenic</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial biogenesis</topic><topic>Mitophagy</topic><topic>Mutation - genetics</topic><topic>Neurons - metabolism</topic><topic>Organelle Biogenesis</topic><topic>PARIS</topic><topic>PARKIN</topic><topic>Parkinson’s disease</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>PGC-1α</topic><topic>Repressor Proteins - metabolism</topic><topic>Ubiquitin-Protein Ligases - deficiency</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>ZNF746</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manoj</creatorcontrib><creatorcontrib>Acevedo-Cintrón, Jesús</creatorcontrib><creatorcontrib>Jhaldiyal, Aanishaa</creatorcontrib><creatorcontrib>Wang, Hu</creatorcontrib><creatorcontrib>Andrabi, Shaida A.</creatorcontrib><creatorcontrib>Eacker, Stephen</creatorcontrib><creatorcontrib>Karuppagounder, Senthilkumar S.</creatorcontrib><creatorcontrib>Brahmachari, Saurav</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Kim, Hyesoo</creatorcontrib><creatorcontrib>Ko, Han Seok</creatorcontrib><creatorcontrib>Dawson, Valina L.</creatorcontrib><creatorcontrib>Dawson, Ted M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manoj</au><au>Acevedo-Cintrón, Jesús</au><au>Jhaldiyal, Aanishaa</au><au>Wang, Hu</au><au>Andrabi, Shaida A.</au><au>Eacker, Stephen</au><au>Karuppagounder, Senthilkumar S.</au><au>Brahmachari, Saurav</au><au>Chen, Rong</au><au>Kim, Hyesoo</au><au>Ko, Han Seok</au><au>Dawson, Valina L.</au><au>Dawson, Ted M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons</atitle><jtitle>Stem cell reports</jtitle><addtitle>Stem Cell Reports</addtitle><date>2020-09-08</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>629</spage><epage>645</epage><pages>629-645</pages><issn>2213-6711</issn><eissn>2213-6711</eissn><abstract>Mutations and loss of activity in PARKIN, an E3 ubiquitin ligase, play a role in the pathogenesis of Parkinson's disease (PD). PARKIN regulates many aspects of mitochondrial quality control including mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. Defects in mitophagy have been hypothesized to play a predominant role in the loss of dopamine (DA) neurons in PD. Here, we show that although there are defects in mitophagy in human DA neurons lacking PARKIN, the mitochondrial deficits are primarily due to defects in mitochondrial biogenesis that are driven by the upregulation of PARIS and the subsequent downregulation of PGC-1α. CRISPR/Cas9 knockdown of PARIS completely restores the mitochondrial biogenesis defects and mitochondrial function without affecting the deficits in mitophagy. These results highlight the importance mitochondrial biogenesis versus mitophagy in the pathogenesis of PD due to inactivation or loss of PARKIN in human DA neurons.
[Display omitted]
•Human DA neuron loss of PARKIN leads to increased PARIS and decreased PGC-1α•Human DA neuron PARKIN loss leads to reduced mitochondrial autophagy and biogenesis•Decreased mitochondrial biogenesis drives the mitochondrial defects in DA neurons•PARIS is a key mediator of the mitochondrial defects in DA neurons lacking PARKIN
In this article, Dawson and colleagues show that human DA neurons lacking PARKIN exhibit mitochondrial defects that are driven by the upregulation of PARIS, downregulation of PGC-1α, and decreased mitochondrial biogenesis. While mitophagy is impaired in human DA neurons lacking PARKIN, it does not appear to contribute to the mitochondrial deficits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32795422</pmid><doi>10.1016/j.stemcr.2020.07.013</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6459-0893</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2213-6711 |
ispartof | Stem cell reports, 2020-09, Vol.15 (3), p.629-645 |
issn | 2213-6711 2213-6711 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486221 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Autophagy Biomarkers - metabolism Cell Differentiation Cell Respiration Cells, Cultured dopamine Dopaminergic Neurons - metabolism Human Embryonic Stem Cells - metabolism human IPSC Humans isogenic Mitochondria - metabolism mitochondrial biogenesis Mitophagy Mutation - genetics Neurons - metabolism Organelle Biogenesis PARIS PARKIN Parkinson’s disease Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism PGC-1α Repressor Proteins - metabolism Ubiquitin-Protein Ligases - deficiency Ubiquitin-Protein Ligases - metabolism ZNF746 |
title | Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20in%20Mitochondrial%20Biogenesis%20Drive%20Mitochondrial%20Alterations%20in%20PARKIN-Deficient%20Human%20Dopamine%20Neurons&rft.jtitle=Stem%20cell%20reports&rft.au=Kumar,%20Manoj&rft.date=2020-09-08&rft.volume=15&rft.issue=3&rft.spage=629&rft.epage=645&rft.pages=629-645&rft.issn=2213-6711&rft.eissn=2213-6711&rft_id=info:doi/10.1016/j.stemcr.2020.07.013&rft_dat=%3Cproquest_pubme%3E2434471263%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434471263&rft_id=info:pmid/32795422&rft_els_id=S2213671120302903&rfr_iscdi=true |