Adaptive viscoelasticity of epithelial cell junctions: from models to methods

Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in genetics & development 2020-08, Vol.63, p.86-94
Hauptverfasser: Cavanaugh, Kate E, Staddon, Michael F, Banerjee, Shiladitya, Gardel, Margaret L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue
container_start_page 86
container_title Current opinion in genetics & development
container_volume 63
creator Cavanaugh, Kate E
Staddon, Michael F
Banerjee, Shiladitya
Gardel, Margaret L
description Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.
doi_str_mv 10.1016/j.gde.2020.05.018
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959437X20300691</els_id><sourcerecordid>2419417348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-953fe36de637ebeb3aeb7d9007b00712da5bece9ea9e619a8f634779db3a0f5a3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVISDbb_IBeio652BlZtmW1UAghX5DSSwu5CVkaZ7XY1lbSLuTfV2HT0FxyGOYwz7zz8RLymUHJgLUX6_LJYllBBSU0JbDugCxYJ2QBvINDsgDZyKLm4vGEnMa4BoCKsfaYnPCqhRp4tSA_Lq3eJLdDunPReBx1TM649Ez9QHHj0gpHp0dqcBzpejub5Pwcv9Ih-IlO3uIYafJ0wrTyNn4iR4MeI5695iX5fXP96-quePh5e391-VCYumGpkA0fkLcWWy6wx55r7IWVAKLPwSqrmx4NStQSWyZ1N7S8FkLaTMLQaL4k3_e6m20_oTU4p6BHtQlu0uFZee3U-8rsVurJ75SoOy5lmwXOXwWC_7PFmNSUz8836hn9NqqqZrJmgmd8SdgeNcHHGHB4G8NAvdig1irboF5sUNCobEPu-fL_fm8d__6egW97IP8Pdw6DisbhbNC6gCYp690H8n8BN3-bBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419417348</pqid></control><display><type>article</type><title>Adaptive viscoelasticity of epithelial cell junctions: from models to methods</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cavanaugh, Kate E ; Staddon, Michael F ; Banerjee, Shiladitya ; Gardel, Margaret L</creator><creatorcontrib>Cavanaugh, Kate E ; Staddon, Michael F ; Banerjee, Shiladitya ; Gardel, Margaret L</creatorcontrib><description>Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.</description><identifier>ISSN: 0959-437X</identifier><identifier>EISSN: 1879-0380</identifier><identifier>DOI: 10.1016/j.gde.2020.05.018</identifier><identifier>PMID: 32604032</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biomechanical Phenomena ; Cell Shape ; Drosophila melanogaster - physiology ; Elasticity ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Intercellular Junctions - physiology ; Mechanotransduction, Cellular ; Models, Biological ; Morphogenesis ; Viscosity</subject><ispartof>Current opinion in genetics &amp; development, 2020-08, Vol.63, p.86-94</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-953fe36de637ebeb3aeb7d9007b00712da5bece9ea9e619a8f634779db3a0f5a3</citedby><cites>FETCH-LOGICAL-c451t-953fe36de637ebeb3aeb7d9007b00712da5bece9ea9e619a8f634779db3a0f5a3</cites><orcidid>0000-0002-8240-7554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0959437X20300691$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32604032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavanaugh, Kate E</creatorcontrib><creatorcontrib>Staddon, Michael F</creatorcontrib><creatorcontrib>Banerjee, Shiladitya</creatorcontrib><creatorcontrib>Gardel, Margaret L</creatorcontrib><title>Adaptive viscoelasticity of epithelial cell junctions: from models to methods</title><title>Current opinion in genetics &amp; development</title><addtitle>Curr Opin Genet Dev</addtitle><description>Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Cell Shape</subject><subject>Drosophila melanogaster - physiology</subject><subject>Elasticity</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Intercellular Junctions - physiology</subject><subject>Mechanotransduction, Cellular</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Viscosity</subject><issn>0959-437X</issn><issn>1879-0380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVISDbb_IBeio652BlZtmW1UAghX5DSSwu5CVkaZ7XY1lbSLuTfV2HT0FxyGOYwz7zz8RLymUHJgLUX6_LJYllBBSU0JbDugCxYJ2QBvINDsgDZyKLm4vGEnMa4BoCKsfaYnPCqhRp4tSA_Lq3eJLdDunPReBx1TM649Ez9QHHj0gpHp0dqcBzpejub5Pwcv9Ih-IlO3uIYafJ0wrTyNn4iR4MeI5695iX5fXP96-quePh5e391-VCYumGpkA0fkLcWWy6wx55r7IWVAKLPwSqrmx4NStQSWyZ1N7S8FkLaTMLQaL4k3_e6m20_oTU4p6BHtQlu0uFZee3U-8rsVurJ75SoOy5lmwXOXwWC_7PFmNSUz8836hn9NqqqZrJmgmd8SdgeNcHHGHB4G8NAvdig1irboF5sUNCobEPu-fL_fm8d__6egW97IP8Pdw6DisbhbNC6gCYp690H8n8BN3-bBw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Cavanaugh, Kate E</creator><creator>Staddon, Michael F</creator><creator>Banerjee, Shiladitya</creator><creator>Gardel, Margaret L</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8240-7554</orcidid></search><sort><creationdate>20200801</creationdate><title>Adaptive viscoelasticity of epithelial cell junctions: from models to methods</title><author>Cavanaugh, Kate E ; Staddon, Michael F ; Banerjee, Shiladitya ; Gardel, Margaret L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-953fe36de637ebeb3aeb7d9007b00712da5bece9ea9e619a8f634779db3a0f5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Cell Shape</topic><topic>Drosophila melanogaster - physiology</topic><topic>Elasticity</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Intercellular Junctions - physiology</topic><topic>Mechanotransduction, Cellular</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavanaugh, Kate E</creatorcontrib><creatorcontrib>Staddon, Michael F</creatorcontrib><creatorcontrib>Banerjee, Shiladitya</creatorcontrib><creatorcontrib>Gardel, Margaret L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in genetics &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavanaugh, Kate E</au><au>Staddon, Michael F</au><au>Banerjee, Shiladitya</au><au>Gardel, Margaret L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive viscoelasticity of epithelial cell junctions: from models to methods</atitle><jtitle>Current opinion in genetics &amp; development</jtitle><addtitle>Curr Opin Genet Dev</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>63</volume><spage>86</spage><epage>94</epage><pages>86-94</pages><issn>0959-437X</issn><eissn>1879-0380</eissn><abstract>Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32604032</pmid><doi>10.1016/j.gde.2020.05.018</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8240-7554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-437X
ispartof Current opinion in genetics & development, 2020-08, Vol.63, p.86-94
issn 0959-437X
1879-0380
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483996
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biomechanical Phenomena
Cell Shape
Drosophila melanogaster - physiology
Elasticity
Epithelial Cells - cytology
Epithelial Cells - physiology
Intercellular Junctions - physiology
Mechanotransduction, Cellular
Models, Biological
Morphogenesis
Viscosity
title Adaptive viscoelasticity of epithelial cell junctions: from models to methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20viscoelasticity%20of%20epithelial%20cell%20junctions:%20from%20models%20to%20methods&rft.jtitle=Current%20opinion%20in%20genetics%20&%20development&rft.au=Cavanaugh,%20Kate%20E&rft.date=2020-08-01&rft.volume=63&rft.spage=86&rft.epage=94&rft.pages=86-94&rft.issn=0959-437X&rft.eissn=1879-0380&rft_id=info:doi/10.1016/j.gde.2020.05.018&rft_dat=%3Cproquest_pubme%3E2419417348%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419417348&rft_id=info:pmid/32604032&rft_els_id=S0959437X20300691&rfr_iscdi=true