Adaptive viscoelasticity of epithelial cell junctions: from models to methods
Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanist...
Gespeichert in:
Veröffentlicht in: | Current opinion in genetics & development 2020-08, Vol.63, p.86-94 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | |
container_start_page | 86 |
container_title | Current opinion in genetics & development |
container_volume | 63 |
creator | Cavanaugh, Kate E Staddon, Michael F Banerjee, Shiladitya Gardel, Margaret L |
description | Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis. |
doi_str_mv | 10.1016/j.gde.2020.05.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959437X20300691</els_id><sourcerecordid>2419417348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-953fe36de637ebeb3aeb7d9007b00712da5bece9ea9e619a8f634779db3a0f5a3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVISDbb_IBeio652BlZtmW1UAghX5DSSwu5CVkaZ7XY1lbSLuTfV2HT0FxyGOYwz7zz8RLymUHJgLUX6_LJYllBBSU0JbDugCxYJ2QBvINDsgDZyKLm4vGEnMa4BoCKsfaYnPCqhRp4tSA_Lq3eJLdDunPReBx1TM649Ez9QHHj0gpHp0dqcBzpejub5Pwcv9Ih-IlO3uIYafJ0wrTyNn4iR4MeI5695iX5fXP96-quePh5e391-VCYumGpkA0fkLcWWy6wx55r7IWVAKLPwSqrmx4NStQSWyZ1N7S8FkLaTMLQaL4k3_e6m20_oTU4p6BHtQlu0uFZee3U-8rsVurJ75SoOy5lmwXOXwWC_7PFmNSUz8836hn9NqqqZrJmgmd8SdgeNcHHGHB4G8NAvdig1irboF5sUNCobEPu-fL_fm8d__6egW97IP8Pdw6DisbhbNC6gCYp690H8n8BN3-bBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419417348</pqid></control><display><type>article</type><title>Adaptive viscoelasticity of epithelial cell junctions: from models to methods</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cavanaugh, Kate E ; Staddon, Michael F ; Banerjee, Shiladitya ; Gardel, Margaret L</creator><creatorcontrib>Cavanaugh, Kate E ; Staddon, Michael F ; Banerjee, Shiladitya ; Gardel, Margaret L</creatorcontrib><description>Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.</description><identifier>ISSN: 0959-437X</identifier><identifier>EISSN: 1879-0380</identifier><identifier>DOI: 10.1016/j.gde.2020.05.018</identifier><identifier>PMID: 32604032</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biomechanical Phenomena ; Cell Shape ; Drosophila melanogaster - physiology ; Elasticity ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Intercellular Junctions - physiology ; Mechanotransduction, Cellular ; Models, Biological ; Morphogenesis ; Viscosity</subject><ispartof>Current opinion in genetics & development, 2020-08, Vol.63, p.86-94</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-953fe36de637ebeb3aeb7d9007b00712da5bece9ea9e619a8f634779db3a0f5a3</citedby><cites>FETCH-LOGICAL-c451t-953fe36de637ebeb3aeb7d9007b00712da5bece9ea9e619a8f634779db3a0f5a3</cites><orcidid>0000-0002-8240-7554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0959437X20300691$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32604032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavanaugh, Kate E</creatorcontrib><creatorcontrib>Staddon, Michael F</creatorcontrib><creatorcontrib>Banerjee, Shiladitya</creatorcontrib><creatorcontrib>Gardel, Margaret L</creatorcontrib><title>Adaptive viscoelasticity of epithelial cell junctions: from models to methods</title><title>Current opinion in genetics & development</title><addtitle>Curr Opin Genet Dev</addtitle><description>Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Cell Shape</subject><subject>Drosophila melanogaster - physiology</subject><subject>Elasticity</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Intercellular Junctions - physiology</subject><subject>Mechanotransduction, Cellular</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Viscosity</subject><issn>0959-437X</issn><issn>1879-0380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVISDbb_IBeio652BlZtmW1UAghX5DSSwu5CVkaZ7XY1lbSLuTfV2HT0FxyGOYwz7zz8RLymUHJgLUX6_LJYllBBSU0JbDugCxYJ2QBvINDsgDZyKLm4vGEnMa4BoCKsfaYnPCqhRp4tSA_Lq3eJLdDunPReBx1TM649Ez9QHHj0gpHp0dqcBzpejub5Pwcv9Ih-IlO3uIYafJ0wrTyNn4iR4MeI5695iX5fXP96-quePh5e391-VCYumGpkA0fkLcWWy6wx55r7IWVAKLPwSqrmx4NStQSWyZ1N7S8FkLaTMLQaL4k3_e6m20_oTU4p6BHtQlu0uFZee3U-8rsVurJ75SoOy5lmwXOXwWC_7PFmNSUz8836hn9NqqqZrJmgmd8SdgeNcHHGHB4G8NAvdig1irboF5sUNCobEPu-fL_fm8d__6egW97IP8Pdw6DisbhbNC6gCYp690H8n8BN3-bBw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Cavanaugh, Kate E</creator><creator>Staddon, Michael F</creator><creator>Banerjee, Shiladitya</creator><creator>Gardel, Margaret L</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8240-7554</orcidid></search><sort><creationdate>20200801</creationdate><title>Adaptive viscoelasticity of epithelial cell junctions: from models to methods</title><author>Cavanaugh, Kate E ; Staddon, Michael F ; Banerjee, Shiladitya ; Gardel, Margaret L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-953fe36de637ebeb3aeb7d9007b00712da5bece9ea9e619a8f634779db3a0f5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Cell Shape</topic><topic>Drosophila melanogaster - physiology</topic><topic>Elasticity</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Intercellular Junctions - physiology</topic><topic>Mechanotransduction, Cellular</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavanaugh, Kate E</creatorcontrib><creatorcontrib>Staddon, Michael F</creatorcontrib><creatorcontrib>Banerjee, Shiladitya</creatorcontrib><creatorcontrib>Gardel, Margaret L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in genetics & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavanaugh, Kate E</au><au>Staddon, Michael F</au><au>Banerjee, Shiladitya</au><au>Gardel, Margaret L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive viscoelasticity of epithelial cell junctions: from models to methods</atitle><jtitle>Current opinion in genetics & development</jtitle><addtitle>Curr Opin Genet Dev</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>63</volume><spage>86</spage><epage>94</epage><pages>86-94</pages><issn>0959-437X</issn><eissn>1879-0380</eissn><abstract>Epithelial morphogenesis relies on constituent cells’ ability to finely tune their mechanical properties. Resulting elastic-like and viscous-like behaviors arise from mechanochemical signaling coordinated spatiotemporally at cell–cell interfaces. Direct measurement of junction rheology can mechanistically dissect mechanical deformations and their molecular origins. However, the physical basis of junction viscoelasticity has only recently become experimentally tractable. Pioneering studies have uncovered exciting findings on the nature of contractile forces and junction deformations, inspiring a fundamentally new way of understanding morphogenesis. Here, we discuss novel techniques that directly test junctional mechanics and describe the relevant Vertex Models, and adaptations thereof, capturing these data. We then present the concept of adaptive tissue viscoelasticity, revealed by optogenetic junction manipulation. Finally, we offer future perspectives on this rapidly evolving field describing the material basis of tissue morphogenesis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32604032</pmid><doi>10.1016/j.gde.2020.05.018</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8240-7554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-437X |
ispartof | Current opinion in genetics & development, 2020-08, Vol.63, p.86-94 |
issn | 0959-437X 1879-0380 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7483996 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Biomechanical Phenomena Cell Shape Drosophila melanogaster - physiology Elasticity Epithelial Cells - cytology Epithelial Cells - physiology Intercellular Junctions - physiology Mechanotransduction, Cellular Models, Biological Morphogenesis Viscosity |
title | Adaptive viscoelasticity of epithelial cell junctions: from models to methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20viscoelasticity%20of%20epithelial%20cell%20junctions:%20from%20models%20to%20methods&rft.jtitle=Current%20opinion%20in%20genetics%20&%20development&rft.au=Cavanaugh,%20Kate%20E&rft.date=2020-08-01&rft.volume=63&rft.spage=86&rft.epage=94&rft.pages=86-94&rft.issn=0959-437X&rft.eissn=1879-0380&rft_id=info:doi/10.1016/j.gde.2020.05.018&rft_dat=%3Cproquest_pubme%3E2419417348%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419417348&rft_id=info:pmid/32604032&rft_els_id=S0959437X20300691&rfr_iscdi=true |