A transformation between stationary point vortex equilibria

A new transformation between stationary point vortex equilibria in the unbounded plane is presented. Given a point vortex equilibrium involving only vortices with negative circulation normalized to −1 and vortices with positive circulations that are either integers or half-integers, the transformati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2020-08, Vol.476 (2240), p.1-21
Hauptverfasser: Krishnamurthy, Vikas S., Wheeler, Miles H., Crowdy, Darren G., Constantin, Adrian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 2240
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 476
creator Krishnamurthy, Vikas S.
Wheeler, Miles H.
Crowdy, Darren G.
Constantin, Adrian
description A new transformation between stationary point vortex equilibria in the unbounded plane is presented. Given a point vortex equilibrium involving only vortices with negative circulation normalized to −1 and vortices with positive circulations that are either integers or half-integers, the transformation produces a new equilibrium with a free complex parameter that appears as an integration constant. When iterated the transformation can produce infinite hierarchies of equilibria, or finite sequences that terminate after a finite number of iterations, each iteration generating equilibria with increasing numbers of point vortices and free parameters. In particular, starting from an isolated point vortex as a seed equilibrium, we recover two known infinite hierarchies of equilibria corresponding to the Adler–Moser polynomials and a class of polynomials found, using very different methods, by Loutsenko (Loutsenko 2004 J. Phys. A: Math. Gen. 37, 1309–1321 (doi:10.1088/0305-4470/37/4/017)). For the latter polynomials, the existence of such a transformation appears to be new. The new transformation, therefore, unifies a wide range of disparate results in the literature on point vortex equilibria.
doi_str_mv 10.1098/rspa.2020.0310
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7482196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27097205</jstor_id><sourcerecordid>27097205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-7b1f635b7620e544f67bfa5e1c19a5c5fba8233672bddbd94cafbe5ee21507da3</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMotlav3oQ9etmaz80GQSjFLyh40XNIdmc1Zbtpk2zV_96tLYKnmWHevHn8ELokeEqwKm9CXJspxRRPMSP4CI0JlySnihfHQ88KngtMyQidxbjEGCtRylM0YlRRSoQco9tZloLpYuPDyiTnu8xC-gTosph-ZxO-s7V3Xcq2PiT4ymDTu9bZ4Mw5OmlMG-HiUCfo7eH-df6UL14en-ezRV4VmKdcWtIUTFhZUAyC86aQtjECSEWUEZVorCkpY4Wktq5trXhlGgsCYEiIZW3YBN3tfde9XUFdQTdEbvU6uNWQTnvj9P9N5z70u99qyUtKVDEYXB8Mgt_0EJNeuVhB25oOfB815ZwKVUrGB-l0L62CjzFA8_eGYL0jrnfE9Y643hEfDq72B8uYfPhTU4mVpFiwH7GxfyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442598734</pqid></control><display><type>article</type><title>A transformation between stationary point vortex equilibria</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Krishnamurthy, Vikas S. ; Wheeler, Miles H. ; Crowdy, Darren G. ; Constantin, Adrian</creator><creatorcontrib>Krishnamurthy, Vikas S. ; Wheeler, Miles H. ; Crowdy, Darren G. ; Constantin, Adrian</creatorcontrib><description>A new transformation between stationary point vortex equilibria in the unbounded plane is presented. Given a point vortex equilibrium involving only vortices with negative circulation normalized to −1 and vortices with positive circulations that are either integers or half-integers, the transformation produces a new equilibrium with a free complex parameter that appears as an integration constant. When iterated the transformation can produce infinite hierarchies of equilibria, or finite sequences that terminate after a finite number of iterations, each iteration generating equilibria with increasing numbers of point vortices and free parameters. In particular, starting from an isolated point vortex as a seed equilibrium, we recover two known infinite hierarchies of equilibria corresponding to the Adler–Moser polynomials and a class of polynomials found, using very different methods, by Loutsenko (Loutsenko 2004 J. Phys. A: Math. Gen. 37, 1309–1321 (doi:10.1088/0305-4470/37/4/017)). For the latter polynomials, the existence of such a transformation appears to be new. The new transformation, therefore, unifies a wide range of disparate results in the literature on point vortex equilibria.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2020.0310</identifier><identifier>PMID: 32922157</identifier><language>eng</language><publisher>Royal Society</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-08, Vol.476 (2240), p.1-21</ispartof><rights>2020 The Author(s)</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-7b1f635b7620e544f67bfa5e1c19a5c5fba8233672bddbd94cafbe5ee21507da3</citedby><cites>FETCH-LOGICAL-c604t-7b1f635b7620e544f67bfa5e1c19a5c5fba8233672bddbd94cafbe5ee21507da3</cites><orcidid>0000-0001-8868-9305 ; 0000-0002-7286-9587 ; 0000-0002-7162-0181 ; 0000-0002-1518-0994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27097205$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27097205$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Krishnamurthy, Vikas S.</creatorcontrib><creatorcontrib>Wheeler, Miles H.</creatorcontrib><creatorcontrib>Crowdy, Darren G.</creatorcontrib><creatorcontrib>Constantin, Adrian</creatorcontrib><title>A transformation between stationary point vortex equilibria</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>A new transformation between stationary point vortex equilibria in the unbounded plane is presented. Given a point vortex equilibrium involving only vortices with negative circulation normalized to −1 and vortices with positive circulations that are either integers or half-integers, the transformation produces a new equilibrium with a free complex parameter that appears as an integration constant. When iterated the transformation can produce infinite hierarchies of equilibria, or finite sequences that terminate after a finite number of iterations, each iteration generating equilibria with increasing numbers of point vortices and free parameters. In particular, starting from an isolated point vortex as a seed equilibrium, we recover two known infinite hierarchies of equilibria corresponding to the Adler–Moser polynomials and a class of polynomials found, using very different methods, by Loutsenko (Loutsenko 2004 J. Phys. A: Math. Gen. 37, 1309–1321 (doi:10.1088/0305-4470/37/4/017)). For the latter polynomials, the existence of such a transformation appears to be new. The new transformation, therefore, unifies a wide range of disparate results in the literature on point vortex equilibria.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEQxYMotlav3oQ9etmaz80GQSjFLyh40XNIdmc1Zbtpk2zV_96tLYKnmWHevHn8ELokeEqwKm9CXJspxRRPMSP4CI0JlySnihfHQ88KngtMyQidxbjEGCtRylM0YlRRSoQco9tZloLpYuPDyiTnu8xC-gTosph-ZxO-s7V3Xcq2PiT4ymDTu9bZ4Mw5OmlMG-HiUCfo7eH-df6UL14en-ezRV4VmKdcWtIUTFhZUAyC86aQtjECSEWUEZVorCkpY4Wktq5trXhlGgsCYEiIZW3YBN3tfde9XUFdQTdEbvU6uNWQTnvj9P9N5z70u99qyUtKVDEYXB8Mgt_0EJNeuVhB25oOfB815ZwKVUrGB-l0L62CjzFA8_eGYL0jrnfE9Y643hEfDq72B8uYfPhTU4mVpFiwH7GxfyE</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Krishnamurthy, Vikas S.</creator><creator>Wheeler, Miles H.</creator><creator>Crowdy, Darren G.</creator><creator>Constantin, Adrian</creator><general>Royal Society</general><general>The Royal Society Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8868-9305</orcidid><orcidid>https://orcid.org/0000-0002-7286-9587</orcidid><orcidid>https://orcid.org/0000-0002-7162-0181</orcidid><orcidid>https://orcid.org/0000-0002-1518-0994</orcidid></search><sort><creationdate>20200801</creationdate><title>A transformation between stationary point vortex equilibria</title><author>Krishnamurthy, Vikas S. ; Wheeler, Miles H. ; Crowdy, Darren G. ; Constantin, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-7b1f635b7620e544f67bfa5e1c19a5c5fba8233672bddbd94cafbe5ee21507da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, Vikas S.</creatorcontrib><creatorcontrib>Wheeler, Miles H.</creatorcontrib><creatorcontrib>Crowdy, Darren G.</creatorcontrib><creatorcontrib>Constantin, Adrian</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamurthy, Vikas S.</au><au>Wheeler, Miles H.</au><au>Crowdy, Darren G.</au><au>Constantin, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transformation between stationary point vortex equilibria</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>476</volume><issue>2240</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>A new transformation between stationary point vortex equilibria in the unbounded plane is presented. Given a point vortex equilibrium involving only vortices with negative circulation normalized to −1 and vortices with positive circulations that are either integers or half-integers, the transformation produces a new equilibrium with a free complex parameter that appears as an integration constant. When iterated the transformation can produce infinite hierarchies of equilibria, or finite sequences that terminate after a finite number of iterations, each iteration generating equilibria with increasing numbers of point vortices and free parameters. In particular, starting from an isolated point vortex as a seed equilibrium, we recover two known infinite hierarchies of equilibria corresponding to the Adler–Moser polynomials and a class of polynomials found, using very different methods, by Loutsenko (Loutsenko 2004 J. Phys. A: Math. Gen. 37, 1309–1321 (doi:10.1088/0305-4470/37/4/017)). For the latter polynomials, the existence of such a transformation appears to be new. The new transformation, therefore, unifies a wide range of disparate results in the literature on point vortex equilibria.</abstract><pub>Royal Society</pub><pmid>32922157</pmid><doi>10.1098/rspa.2020.0310</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8868-9305</orcidid><orcidid>https://orcid.org/0000-0002-7286-9587</orcidid><orcidid>https://orcid.org/0000-0002-7162-0181</orcidid><orcidid>https://orcid.org/0000-0002-1518-0994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-08, Vol.476 (2240), p.1-21
issn 1364-5021
1471-2946
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7482196
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
title A transformation between stationary point vortex equilibria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transformation%20between%20stationary%20point%20vortex%20equilibria&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Krishnamurthy,%20Vikas%20S.&rft.date=2020-08-01&rft.volume=476&rft.issue=2240&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2020.0310&rft_dat=%3Cjstor_pubme%3E27097205%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2442598734&rft_id=info:pmid/32922157&rft_jstor_id=27097205&rfr_iscdi=true