Development of machine learning-based clinical decision support system for hepatocellular carcinoma
There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-09, Vol.10 (1), p.14855-14855, Article 14855 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14855 |
---|---|
container_issue | 1 |
container_start_page | 14855 |
container_title | Scientific reports |
container_volume | 10 |
creator | Choi, Gwang Hyeon Yun, Jihye Choi, Jonggi Lee, Danbi Shim, Ju Hyun Lee, Han Chu Chung, Young-Hwa Lee, Yung Sang Park, Beomhee Kim, Namkug Kim, Kang Mo |
description | There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set (
N
= 813) using random forest method and validated it in the validation set (
N
= 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC. |
doi_str_mv | 10.1038/s41598-020-71796-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7481788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4322309099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-be7e72efed719faf513ae707ada7b71a37446beb65249cc930686174012c5753</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMottT-ARcScONmNJ-TZCNI_YSCm-5DJnPm3pRMMiYzhfbXN_XWchU8mxw4z3lPXl6EXlPynhKuP1RBpdEdYaRTVJm-u3uGThkRsmOcsedH_Qk6r_WatJLMCGpeohPODNFU81PkP8MNxLzMkFacJzw7vw8JcARXUki7bnAVRuxjSMG7iEfwoYaccN2WJZcV19u6woynXPAeFrdmDzFu0RXsXfEh5dm9Qi8mFyucP75n6Orrl6uL793lz28_Lj5ddl4osXYDKFAMJhgVNZObJOUOFFFudGpQ1HElRD_A0EsmjPeGk173VAlCmZdK8jP08SC7bMMMo2-Oiot2KWF25dZmF-zfkxT2dpdvrBKaKq2bwLtHgZJ_bVBXO4f6YMclyFu1TAjak54T0tC3_6DXeSupubNUGy0llapvFDtQvuRaC0xPn6HEPqRoDynalqL9naK9a0tvjm08rfzJrAH8ANQ2SjsoR7f_L3sP1pqq2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898551576</pqid></control><display><type>article</type><title>Development of machine learning-based clinical decision support system for hepatocellular carcinoma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Choi, Gwang Hyeon ; Yun, Jihye ; Choi, Jonggi ; Lee, Danbi ; Shim, Ju Hyun ; Lee, Han Chu ; Chung, Young-Hwa ; Lee, Yung Sang ; Park, Beomhee ; Kim, Namkug ; Kim, Kang Mo</creator><creatorcontrib>Choi, Gwang Hyeon ; Yun, Jihye ; Choi, Jonggi ; Lee, Danbi ; Shim, Ju Hyun ; Lee, Han Chu ; Chung, Young-Hwa ; Lee, Yung Sang ; Park, Beomhee ; Kim, Namkug ; Kim, Kang Mo</creatorcontrib><description>There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set (
N
= 813) using random forest method and validated it in the validation set (
N
= 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-71796-z</identifier><identifier>PMID: 32908183</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/1305 ; 631/114/2413 ; 631/67 ; 631/67/1504 ; 692/308 ; 692/4020 ; 692/4020/4021 ; Aged ; Apoptosis ; Carcinoma, Hepatocellular - diagnosis ; Carcinoma, Hepatocellular - therapy ; Deacetylation ; Decision Support Systems, Clinical ; Deoxyguanosine ; Deoxyribonucleic acid ; DNA ; Extracellular signal-regulated kinase ; Female ; Fluorides ; Fluorosis ; FOXO3 protein ; Glutathione ; Humanities and Social Sciences ; Humans ; Liver cancer ; Liver Neoplasms - diagnosis ; Liver Neoplasms - therapy ; Machine Learning ; Male ; Manganese ; Middle Aged ; Mitochondria ; multidisciplinary ; Neoplasm Staging ; Oxidative stress ; Prediction models ; Reactive oxygen species ; Republic of Korea ; Retrospective Studies ; Science ; Science (multidisciplinary) ; Signal transduction ; Sodium ; Sodium fluoride ; Superoxide dismutase ; Survival ; Treatment Outcome ; Ultrastructure</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.14855-14855, Article 14855</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-be7e72efed719faf513ae707ada7b71a37446beb65249cc930686174012c5753</citedby><cites>FETCH-LOGICAL-c474t-be7e72efed719faf513ae707ada7b71a37446beb65249cc930686174012c5753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481788/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481788/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32908183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Gwang Hyeon</creatorcontrib><creatorcontrib>Yun, Jihye</creatorcontrib><creatorcontrib>Choi, Jonggi</creatorcontrib><creatorcontrib>Lee, Danbi</creatorcontrib><creatorcontrib>Shim, Ju Hyun</creatorcontrib><creatorcontrib>Lee, Han Chu</creatorcontrib><creatorcontrib>Chung, Young-Hwa</creatorcontrib><creatorcontrib>Lee, Yung Sang</creatorcontrib><creatorcontrib>Park, Beomhee</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><creatorcontrib>Kim, Kang Mo</creatorcontrib><title>Development of machine learning-based clinical decision support system for hepatocellular carcinoma</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set (
N
= 813) using random forest method and validated it in the validation set (
N
= 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC.</description><subject>631/114</subject><subject>631/114/1305</subject><subject>631/114/2413</subject><subject>631/67</subject><subject>631/67/1504</subject><subject>692/308</subject><subject>692/4020</subject><subject>692/4020/4021</subject><subject>Aged</subject><subject>Apoptosis</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Carcinoma, Hepatocellular - therapy</subject><subject>Deacetylation</subject><subject>Decision Support Systems, Clinical</subject><subject>Deoxyguanosine</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Extracellular signal-regulated kinase</subject><subject>Female</subject><subject>Fluorides</subject><subject>Fluorosis</subject><subject>FOXO3 protein</subject><subject>Glutathione</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Liver Neoplasms - therapy</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Manganese</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Neoplasm Staging</subject><subject>Oxidative stress</subject><subject>Prediction models</subject><subject>Reactive oxygen species</subject><subject>Republic of Korea</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Sodium</subject><subject>Sodium fluoride</subject><subject>Superoxide dismutase</subject><subject>Survival</subject><subject>Treatment Outcome</subject><subject>Ultrastructure</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEUhoMottT-ARcScONmNJ-TZCNI_YSCm-5DJnPm3pRMMiYzhfbXN_XWchU8mxw4z3lPXl6EXlPynhKuP1RBpdEdYaRTVJm-u3uGThkRsmOcsedH_Qk6r_WatJLMCGpeohPODNFU81PkP8MNxLzMkFacJzw7vw8JcARXUki7bnAVRuxjSMG7iEfwoYaccN2WJZcV19u6woynXPAeFrdmDzFu0RXsXfEh5dm9Qi8mFyucP75n6Orrl6uL793lz28_Lj5ddl4osXYDKFAMJhgVNZObJOUOFFFudGpQ1HElRD_A0EsmjPeGk173VAlCmZdK8jP08SC7bMMMo2-Oiot2KWF25dZmF-zfkxT2dpdvrBKaKq2bwLtHgZJ_bVBXO4f6YMclyFu1TAjak54T0tC3_6DXeSupubNUGy0llapvFDtQvuRaC0xPn6HEPqRoDynalqL9naK9a0tvjm08rfzJrAH8ANQ2SjsoR7f_L3sP1pqq2w</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Choi, Gwang Hyeon</creator><creator>Yun, Jihye</creator><creator>Choi, Jonggi</creator><creator>Lee, Danbi</creator><creator>Shim, Ju Hyun</creator><creator>Lee, Han Chu</creator><creator>Chung, Young-Hwa</creator><creator>Lee, Yung Sang</creator><creator>Park, Beomhee</creator><creator>Kim, Namkug</creator><creator>Kim, Kang Mo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200909</creationdate><title>Development of machine learning-based clinical decision support system for hepatocellular carcinoma</title><author>Choi, Gwang Hyeon ; Yun, Jihye ; Choi, Jonggi ; Lee, Danbi ; Shim, Ju Hyun ; Lee, Han Chu ; Chung, Young-Hwa ; Lee, Yung Sang ; Park, Beomhee ; Kim, Namkug ; Kim, Kang Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-be7e72efed719faf513ae707ada7b71a37446beb65249cc930686174012c5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/114/1305</topic><topic>631/114/2413</topic><topic>631/67</topic><topic>631/67/1504</topic><topic>692/308</topic><topic>692/4020</topic><topic>692/4020/4021</topic><topic>Aged</topic><topic>Apoptosis</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Carcinoma, Hepatocellular - therapy</topic><topic>Deacetylation</topic><topic>Decision Support Systems, Clinical</topic><topic>Deoxyguanosine</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Extracellular signal-regulated kinase</topic><topic>Female</topic><topic>Fluorides</topic><topic>Fluorosis</topic><topic>FOXO3 protein</topic><topic>Glutathione</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Liver Neoplasms - therapy</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Manganese</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Neoplasm Staging</topic><topic>Oxidative stress</topic><topic>Prediction models</topic><topic>Reactive oxygen species</topic><topic>Republic of Korea</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Sodium</topic><topic>Sodium fluoride</topic><topic>Superoxide dismutase</topic><topic>Survival</topic><topic>Treatment Outcome</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Gwang Hyeon</creatorcontrib><creatorcontrib>Yun, Jihye</creatorcontrib><creatorcontrib>Choi, Jonggi</creatorcontrib><creatorcontrib>Lee, Danbi</creatorcontrib><creatorcontrib>Shim, Ju Hyun</creatorcontrib><creatorcontrib>Lee, Han Chu</creatorcontrib><creatorcontrib>Chung, Young-Hwa</creatorcontrib><creatorcontrib>Lee, Yung Sang</creatorcontrib><creatorcontrib>Park, Beomhee</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><creatorcontrib>Kim, Kang Mo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Gwang Hyeon</au><au>Yun, Jihye</au><au>Choi, Jonggi</au><au>Lee, Danbi</au><au>Shim, Ju Hyun</au><au>Lee, Han Chu</au><au>Chung, Young-Hwa</au><au>Lee, Yung Sang</au><au>Park, Beomhee</au><au>Kim, Namkug</au><au>Kim, Kang Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of machine learning-based clinical decision support system for hepatocellular carcinoma</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-09</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>14855</spage><epage>14855</epage><pages>14855-14855</pages><artnum>14855</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set (
N
= 813) using random forest method and validated it in the validation set (
N
= 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32908183</pmid><doi>10.1038/s41598-020-71796-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-09, Vol.10 (1), p.14855-14855, Article 14855 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7481788 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/114 631/114/1305 631/114/2413 631/67 631/67/1504 692/308 692/4020 692/4020/4021 Aged Apoptosis Carcinoma, Hepatocellular - diagnosis Carcinoma, Hepatocellular - therapy Deacetylation Decision Support Systems, Clinical Deoxyguanosine Deoxyribonucleic acid DNA Extracellular signal-regulated kinase Female Fluorides Fluorosis FOXO3 protein Glutathione Humanities and Social Sciences Humans Liver cancer Liver Neoplasms - diagnosis Liver Neoplasms - therapy Machine Learning Male Manganese Middle Aged Mitochondria multidisciplinary Neoplasm Staging Oxidative stress Prediction models Reactive oxygen species Republic of Korea Retrospective Studies Science Science (multidisciplinary) Signal transduction Sodium Sodium fluoride Superoxide dismutase Survival Treatment Outcome Ultrastructure |
title | Development of machine learning-based clinical decision support system for hepatocellular carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20machine%20learning-based%20clinical%20decision%20support%20system%20for%20hepatocellular%20carcinoma&rft.jtitle=Scientific%20reports&rft.au=Choi,%20Gwang%20Hyeon&rft.date=2020-09-09&rft.volume=10&rft.issue=1&rft.spage=14855&rft.epage=14855&rft.pages=14855-14855&rft.artnum=14855&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-71796-z&rft_dat=%3Cproquest_pubme%3E4322309099%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898551576&rft_id=info:pmid/32908183&rfr_iscdi=true |