Development of machine learning-based clinical decision support system for hepatocellular carcinoma

There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-09, Vol.10 (1), p.14855-14855, Article 14855
Hauptverfasser: Choi, Gwang Hyeon, Yun, Jihye, Choi, Jonggi, Lee, Danbi, Shim, Ju Hyun, Lee, Han Chu, Chung, Young-Hwa, Lee, Yung Sang, Park, Beomhee, Kim, Namkug, Kim, Kang Mo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14855
container_issue 1
container_start_page 14855
container_title Scientific reports
container_volume 10
creator Choi, Gwang Hyeon
Yun, Jihye
Choi, Jonggi
Lee, Danbi
Shim, Ju Hyun
Lee, Han Chu
Chung, Young-Hwa
Lee, Yung Sang
Park, Beomhee
Kim, Namkug
Kim, Kang Mo
description There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set ( N  = 813) using random forest method and validated it in the validation set ( N  = 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC.
doi_str_mv 10.1038/s41598-020-71796-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7481788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4322309099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-be7e72efed719faf513ae707ada7b71a37446beb65249cc930686174012c5753</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMottT-ARcScONmNJ-TZCNI_YSCm-5DJnPm3pRMMiYzhfbXN_XWchU8mxw4z3lPXl6EXlPynhKuP1RBpdEdYaRTVJm-u3uGThkRsmOcsedH_Qk6r_WatJLMCGpeohPODNFU81PkP8MNxLzMkFacJzw7vw8JcARXUki7bnAVRuxjSMG7iEfwoYaccN2WJZcV19u6woynXPAeFrdmDzFu0RXsXfEh5dm9Qi8mFyucP75n6Orrl6uL793lz28_Lj5ddl4osXYDKFAMJhgVNZObJOUOFFFudGpQ1HElRD_A0EsmjPeGk173VAlCmZdK8jP08SC7bMMMo2-Oiot2KWF25dZmF-zfkxT2dpdvrBKaKq2bwLtHgZJ_bVBXO4f6YMclyFu1TAjak54T0tC3_6DXeSupubNUGy0llapvFDtQvuRaC0xPn6HEPqRoDynalqL9naK9a0tvjm08rfzJrAH8ANQ2SjsoR7f_L3sP1pqq2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898551576</pqid></control><display><type>article</type><title>Development of machine learning-based clinical decision support system for hepatocellular carcinoma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Choi, Gwang Hyeon ; Yun, Jihye ; Choi, Jonggi ; Lee, Danbi ; Shim, Ju Hyun ; Lee, Han Chu ; Chung, Young-Hwa ; Lee, Yung Sang ; Park, Beomhee ; Kim, Namkug ; Kim, Kang Mo</creator><creatorcontrib>Choi, Gwang Hyeon ; Yun, Jihye ; Choi, Jonggi ; Lee, Danbi ; Shim, Ju Hyun ; Lee, Han Chu ; Chung, Young-Hwa ; Lee, Yung Sang ; Park, Beomhee ; Kim, Namkug ; Kim, Kang Mo</creatorcontrib><description>There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set ( N  = 813) using random forest method and validated it in the validation set ( N  = 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-71796-z</identifier><identifier>PMID: 32908183</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/114/1305 ; 631/114/2413 ; 631/67 ; 631/67/1504 ; 692/308 ; 692/4020 ; 692/4020/4021 ; Aged ; Apoptosis ; Carcinoma, Hepatocellular - diagnosis ; Carcinoma, Hepatocellular - therapy ; Deacetylation ; Decision Support Systems, Clinical ; Deoxyguanosine ; Deoxyribonucleic acid ; DNA ; Extracellular signal-regulated kinase ; Female ; Fluorides ; Fluorosis ; FOXO3 protein ; Glutathione ; Humanities and Social Sciences ; Humans ; Liver cancer ; Liver Neoplasms - diagnosis ; Liver Neoplasms - therapy ; Machine Learning ; Male ; Manganese ; Middle Aged ; Mitochondria ; multidisciplinary ; Neoplasm Staging ; Oxidative stress ; Prediction models ; Reactive oxygen species ; Republic of Korea ; Retrospective Studies ; Science ; Science (multidisciplinary) ; Signal transduction ; Sodium ; Sodium fluoride ; Superoxide dismutase ; Survival ; Treatment Outcome ; Ultrastructure</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.14855-14855, Article 14855</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-be7e72efed719faf513ae707ada7b71a37446beb65249cc930686174012c5753</citedby><cites>FETCH-LOGICAL-c474t-be7e72efed719faf513ae707ada7b71a37446beb65249cc930686174012c5753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481788/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481788/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32908183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Gwang Hyeon</creatorcontrib><creatorcontrib>Yun, Jihye</creatorcontrib><creatorcontrib>Choi, Jonggi</creatorcontrib><creatorcontrib>Lee, Danbi</creatorcontrib><creatorcontrib>Shim, Ju Hyun</creatorcontrib><creatorcontrib>Lee, Han Chu</creatorcontrib><creatorcontrib>Chung, Young-Hwa</creatorcontrib><creatorcontrib>Lee, Yung Sang</creatorcontrib><creatorcontrib>Park, Beomhee</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><creatorcontrib>Kim, Kang Mo</creatorcontrib><title>Development of machine learning-based clinical decision support system for hepatocellular carcinoma</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set ( N  = 813) using random forest method and validated it in the validation set ( N  = 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC.</description><subject>631/114</subject><subject>631/114/1305</subject><subject>631/114/2413</subject><subject>631/67</subject><subject>631/67/1504</subject><subject>692/308</subject><subject>692/4020</subject><subject>692/4020/4021</subject><subject>Aged</subject><subject>Apoptosis</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Carcinoma, Hepatocellular - therapy</subject><subject>Deacetylation</subject><subject>Decision Support Systems, Clinical</subject><subject>Deoxyguanosine</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Extracellular signal-regulated kinase</subject><subject>Female</subject><subject>Fluorides</subject><subject>Fluorosis</subject><subject>FOXO3 protein</subject><subject>Glutathione</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Liver Neoplasms - therapy</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Manganese</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Neoplasm Staging</subject><subject>Oxidative stress</subject><subject>Prediction models</subject><subject>Reactive oxygen species</subject><subject>Republic of Korea</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Sodium</subject><subject>Sodium fluoride</subject><subject>Superoxide dismutase</subject><subject>Survival</subject><subject>Treatment Outcome</subject><subject>Ultrastructure</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEUhoMottT-ARcScONmNJ-TZCNI_YSCm-5DJnPm3pRMMiYzhfbXN_XWchU8mxw4z3lPXl6EXlPynhKuP1RBpdEdYaRTVJm-u3uGThkRsmOcsedH_Qk6r_WatJLMCGpeohPODNFU81PkP8MNxLzMkFacJzw7vw8JcARXUki7bnAVRuxjSMG7iEfwoYaccN2WJZcV19u6woynXPAeFrdmDzFu0RXsXfEh5dm9Qi8mFyucP75n6Orrl6uL793lz28_Lj5ddl4osXYDKFAMJhgVNZObJOUOFFFudGpQ1HElRD_A0EsmjPeGk173VAlCmZdK8jP08SC7bMMMo2-Oiot2KWF25dZmF-zfkxT2dpdvrBKaKq2bwLtHgZJ_bVBXO4f6YMclyFu1TAjak54T0tC3_6DXeSupubNUGy0llapvFDtQvuRaC0xPn6HEPqRoDynalqL9naK9a0tvjm08rfzJrAH8ANQ2SjsoR7f_L3sP1pqq2w</recordid><startdate>20200909</startdate><enddate>20200909</enddate><creator>Choi, Gwang Hyeon</creator><creator>Yun, Jihye</creator><creator>Choi, Jonggi</creator><creator>Lee, Danbi</creator><creator>Shim, Ju Hyun</creator><creator>Lee, Han Chu</creator><creator>Chung, Young-Hwa</creator><creator>Lee, Yung Sang</creator><creator>Park, Beomhee</creator><creator>Kim, Namkug</creator><creator>Kim, Kang Mo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200909</creationdate><title>Development of machine learning-based clinical decision support system for hepatocellular carcinoma</title><author>Choi, Gwang Hyeon ; Yun, Jihye ; Choi, Jonggi ; Lee, Danbi ; Shim, Ju Hyun ; Lee, Han Chu ; Chung, Young-Hwa ; Lee, Yung Sang ; Park, Beomhee ; Kim, Namkug ; Kim, Kang Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-be7e72efed719faf513ae707ada7b71a37446beb65249cc930686174012c5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/114/1305</topic><topic>631/114/2413</topic><topic>631/67</topic><topic>631/67/1504</topic><topic>692/308</topic><topic>692/4020</topic><topic>692/4020/4021</topic><topic>Aged</topic><topic>Apoptosis</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Carcinoma, Hepatocellular - therapy</topic><topic>Deacetylation</topic><topic>Decision Support Systems, Clinical</topic><topic>Deoxyguanosine</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Extracellular signal-regulated kinase</topic><topic>Female</topic><topic>Fluorides</topic><topic>Fluorosis</topic><topic>FOXO3 protein</topic><topic>Glutathione</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Liver Neoplasms - therapy</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Manganese</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Neoplasm Staging</topic><topic>Oxidative stress</topic><topic>Prediction models</topic><topic>Reactive oxygen species</topic><topic>Republic of Korea</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Sodium</topic><topic>Sodium fluoride</topic><topic>Superoxide dismutase</topic><topic>Survival</topic><topic>Treatment Outcome</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Gwang Hyeon</creatorcontrib><creatorcontrib>Yun, Jihye</creatorcontrib><creatorcontrib>Choi, Jonggi</creatorcontrib><creatorcontrib>Lee, Danbi</creatorcontrib><creatorcontrib>Shim, Ju Hyun</creatorcontrib><creatorcontrib>Lee, Han Chu</creatorcontrib><creatorcontrib>Chung, Young-Hwa</creatorcontrib><creatorcontrib>Lee, Yung Sang</creatorcontrib><creatorcontrib>Park, Beomhee</creatorcontrib><creatorcontrib>Kim, Namkug</creatorcontrib><creatorcontrib>Kim, Kang Mo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Gwang Hyeon</au><au>Yun, Jihye</au><au>Choi, Jonggi</au><au>Lee, Danbi</au><au>Shim, Ju Hyun</au><au>Lee, Han Chu</au><au>Chung, Young-Hwa</au><au>Lee, Yung Sang</au><au>Park, Beomhee</au><au>Kim, Namkug</au><au>Kim, Kang Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of machine learning-based clinical decision support system for hepatocellular carcinoma</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-09</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>14855</spage><epage>14855</epage><pages>14855-14855</pages><artnum>14855</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set ( N  = 813) using random forest method and validated it in the validation set ( N  = 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32908183</pmid><doi>10.1038/s41598-020-71796-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-09, Vol.10 (1), p.14855-14855, Article 14855
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7481788
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/114
631/114/1305
631/114/2413
631/67
631/67/1504
692/308
692/4020
692/4020/4021
Aged
Apoptosis
Carcinoma, Hepatocellular - diagnosis
Carcinoma, Hepatocellular - therapy
Deacetylation
Decision Support Systems, Clinical
Deoxyguanosine
Deoxyribonucleic acid
DNA
Extracellular signal-regulated kinase
Female
Fluorides
Fluorosis
FOXO3 protein
Glutathione
Humanities and Social Sciences
Humans
Liver cancer
Liver Neoplasms - diagnosis
Liver Neoplasms - therapy
Machine Learning
Male
Manganese
Middle Aged
Mitochondria
multidisciplinary
Neoplasm Staging
Oxidative stress
Prediction models
Reactive oxygen species
Republic of Korea
Retrospective Studies
Science
Science (multidisciplinary)
Signal transduction
Sodium
Sodium fluoride
Superoxide dismutase
Survival
Treatment Outcome
Ultrastructure
title Development of machine learning-based clinical decision support system for hepatocellular carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20machine%20learning-based%20clinical%20decision%20support%20system%20for%20hepatocellular%20carcinoma&rft.jtitle=Scientific%20reports&rft.au=Choi,%20Gwang%20Hyeon&rft.date=2020-09-09&rft.volume=10&rft.issue=1&rft.spage=14855&rft.epage=14855&rft.pages=14855-14855&rft.artnum=14855&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-71796-z&rft_dat=%3Cproquest_pubme%3E4322309099%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898551576&rft_id=info:pmid/32908183&rfr_iscdi=true