Clinical and laboratory features of COVID-19: Predictors of severe prognosis

•Decrease in %LUC (Large unstained cells%) value predicts severe SARS-CoV-2 infection.•Laboratory parameters associated with the severe illness in COVID-19 patients.•The optimal cut-off values of relevant parameters to define risk of critical illness.•The relevant coagulation abnormalities to predic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International immunopharmacology 2020-11, Vol.88, p.106950-106950, Article 106950
Hauptverfasser: Bastug, Aliye, Bodur, Hurrem, Erdogan, Serpil, Gokcinar, Derya, Kazancioglu, Sumeyye, Kosovali, Behiye Deniz, Ozbay, Bahadır Orkun, Gok, Gamze, Turan, Isil Ozkocak, Yilmaz, Gulsen, Gonen, Canan Cam, Yilmaz, Fatma Meric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106950
container_issue
container_start_page 106950
container_title International immunopharmacology
container_volume 88
creator Bastug, Aliye
Bodur, Hurrem
Erdogan, Serpil
Gokcinar, Derya
Kazancioglu, Sumeyye
Kosovali, Behiye Deniz
Ozbay, Bahadır Orkun
Gok, Gamze
Turan, Isil Ozkocak
Yilmaz, Gulsen
Gonen, Canan Cam
Yilmaz, Fatma Meric
description •Decrease in %LUC (Large unstained cells%) value predicts severe SARS-CoV-2 infection.•Laboratory parameters associated with the severe illness in COVID-19 patients.•The optimal cut-off values of relevant parameters to define risk of critical illness.•The relevant coagulation abnormalities to predict severe patients with COVID-19. Coronavirus disease 2019 (COVID-19) emerged first in December 2019 in Wuhan, China and quickly spread throughout the world. Clinical and laboratory data are of importance to increase the success in the management of COVID-19 patients. Data were obtained retrospectively from medical records of 191 hospitalized patients diagnosed with COVID-19 from a tertiary single-center hospital between March and April 2020. Prognostic effects of variables on admission among patients who received intensive care unit (ICU) support and those who didn’t require ICU care were compared. Patients required ICU care (n = 46) were older (median, 71 vs. 43 years), with more underlying comorbidities (76.1% vs. 33.1%). ICU patients had lower lymphocytes, percentage of large unstained cell (%LUC), hemoglobin, total protein, and albumin, but higher leucocytes, neutrophils, neutrophil–lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), platelet-lymphocytes ratio (PLR), urea, creatinine, aspartate amino transferase (AST), lactate dehydrogenase (LDH), and D-dimer when compared with non-critically ill patients (p 
doi_str_mv 10.1016/j.intimp.2020.106950
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7480980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S156757692032292X</els_id><sourcerecordid>2442221012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-76c62a87444653226af9068600605e03aad4a2a298eda4aafd3a00846164ef23</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtRCIlsIfIBSJC5dsx45jOxyQ0LZApZXKoeJqTZ1J8SprL3ayUv--3m4p0AMnW2_evJk3j7G3HBYcuDpdL3yY_Ga7ECD2kOpaeMaOudGm5hra5-XfKl23WnVH7FXOa4CCS_6SHTWi453g-pitlqMP3uFYYeirEa9jwimm22ognOZEuYpDtbz8cXFW8-5j9T1R710h3OOZdpSo2qZ4E2L2-TV7MeCY6c3De8KuvpxfLb_Vq8uvF8vPq9q1rZ5qrZwSaLSUUrWNEAqHDpRRAApaggaxlyhQdIZ6lIhD3yCAkYorSYNoTting-x2vt5Q7yhMCUe7TX6D6dZG9PbfSvA_7U3cWS0NdAaKwIcHgRR_zZQnu_HZ0ThioDhnK6QUQpQr72e9f0JdxzmF4q6wtDFle-gKSx5YLsWcEw2Py3Cw-7Ts2h7Ssvu07CGt0vbubyOPTb_j-eOUyjV3npLNzlNwJYREbrJ99P-fcAfOuaar</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478822609</pqid></control><display><type>article</type><title>Clinical and laboratory features of COVID-19: Predictors of severe prognosis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bastug, Aliye ; Bodur, Hurrem ; Erdogan, Serpil ; Gokcinar, Derya ; Kazancioglu, Sumeyye ; Kosovali, Behiye Deniz ; Ozbay, Bahadır Orkun ; Gok, Gamze ; Turan, Isil Ozkocak ; Yilmaz, Gulsen ; Gonen, Canan Cam ; Yilmaz, Fatma Meric</creator><creatorcontrib>Bastug, Aliye ; Bodur, Hurrem ; Erdogan, Serpil ; Gokcinar, Derya ; Kazancioglu, Sumeyye ; Kosovali, Behiye Deniz ; Ozbay, Bahadır Orkun ; Gok, Gamze ; Turan, Isil Ozkocak ; Yilmaz, Gulsen ; Gonen, Canan Cam ; Yilmaz, Fatma Meric</creatorcontrib><description>•Decrease in %LUC (Large unstained cells%) value predicts severe SARS-CoV-2 infection.•Laboratory parameters associated with the severe illness in COVID-19 patients.•The optimal cut-off values of relevant parameters to define risk of critical illness.•The relevant coagulation abnormalities to predict severe patients with COVID-19. Coronavirus disease 2019 (COVID-19) emerged first in December 2019 in Wuhan, China and quickly spread throughout the world. Clinical and laboratory data are of importance to increase the success in the management of COVID-19 patients. Data were obtained retrospectively from medical records of 191 hospitalized patients diagnosed with COVID-19 from a tertiary single-center hospital between March and April 2020. Prognostic effects of variables on admission among patients who received intensive care unit (ICU) support and those who didn’t require ICU care were compared. Patients required ICU care (n = 46) were older (median, 71 vs. 43 years), with more underlying comorbidities (76.1% vs. 33.1%). ICU patients had lower lymphocytes, percentage of large unstained cell (%LUC), hemoglobin, total protein, and albumin, but higher leucocytes, neutrophils, neutrophil–lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), platelet-lymphocytes ratio (PLR), urea, creatinine, aspartate amino transferase (AST), lactate dehydrogenase (LDH), and D-dimer when compared with non-critically ill patients (p &lt; 0.001). A logistic regression model was created to include ferritin, %LUC, NLR, and D-dimer. %LUC decrease and D-dimer increase had the highest odds ratios (0.093 vs 5.597, respectively) to predict severe prognosis. D-dimer, CRP, and NLR had the highest AUC in the ROC analysis (0.896, 0.874, 0.861, respectively). The comprehensive analysis of clinical and admission laboratory parameters to identify patients with severe prognosis is important not only for the follow-up of the patients but also to identify the pathophysiology of the disease. %LUC decrease and D-dimer, NLR, and CRP increases seem to be the most powerful laboratory predictors of severe prognosis.</description><identifier>ISSN: 1567-5769</identifier><identifier>EISSN: 1878-1705</identifier><identifier>DOI: 10.1016/j.intimp.2020.106950</identifier><identifier>PMID: 32919217</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Albumins ; Biomarkers - blood ; Clinical Laboratory Techniques - methods ; Coronavirus Infections - diagnosis ; Coronavirus Infections - drug therapy ; Coronavirus Infections - mortality ; Coronaviruses ; COVID-19 ; COVID-19 Testing ; Creatinine ; Critical Care - methods ; Critical Illness ; Dimers ; Female ; Ferritin ; Hemoglobin ; Humans ; Intensive Care Units ; L-Lactate dehydrogenase ; Laboratories ; Lactate dehydrogenase ; Lactic acid ; Leukocytes ; Leukocytes (neutrophilic) ; Logistic Models ; Lymphocytes ; Male ; Medical Records ; Middle Aged ; Monocytes ; Pandemics ; Parameter identification ; Patients ; Pneumonia, Viral - diagnosis ; Pneumonia, Viral - drug therapy ; Pneumonia, Viral - mortality ; Predictive Value of Tests ; Prognosis ; Regression analysis ; Regression models ; Retrospective Studies ; ROC Curve ; Tertiary Care Centers ; Turkey ; Urea ; Viral diseases ; Young Adult</subject><ispartof>International immunopharmacology, 2020-11, Vol.88, p.106950-106950, Article 106950</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Nov 2020</rights><rights>2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-76c62a87444653226af9068600605e03aad4a2a298eda4aafd3a00846164ef23</citedby><cites>FETCH-LOGICAL-c557t-76c62a87444653226af9068600605e03aad4a2a298eda4aafd3a00846164ef23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.intimp.2020.106950$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32919217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastug, Aliye</creatorcontrib><creatorcontrib>Bodur, Hurrem</creatorcontrib><creatorcontrib>Erdogan, Serpil</creatorcontrib><creatorcontrib>Gokcinar, Derya</creatorcontrib><creatorcontrib>Kazancioglu, Sumeyye</creatorcontrib><creatorcontrib>Kosovali, Behiye Deniz</creatorcontrib><creatorcontrib>Ozbay, Bahadır Orkun</creatorcontrib><creatorcontrib>Gok, Gamze</creatorcontrib><creatorcontrib>Turan, Isil Ozkocak</creatorcontrib><creatorcontrib>Yilmaz, Gulsen</creatorcontrib><creatorcontrib>Gonen, Canan Cam</creatorcontrib><creatorcontrib>Yilmaz, Fatma Meric</creatorcontrib><title>Clinical and laboratory features of COVID-19: Predictors of severe prognosis</title><title>International immunopharmacology</title><addtitle>Int Immunopharmacol</addtitle><description>•Decrease in %LUC (Large unstained cells%) value predicts severe SARS-CoV-2 infection.•Laboratory parameters associated with the severe illness in COVID-19 patients.•The optimal cut-off values of relevant parameters to define risk of critical illness.•The relevant coagulation abnormalities to predict severe patients with COVID-19. Coronavirus disease 2019 (COVID-19) emerged first in December 2019 in Wuhan, China and quickly spread throughout the world. Clinical and laboratory data are of importance to increase the success in the management of COVID-19 patients. Data were obtained retrospectively from medical records of 191 hospitalized patients diagnosed with COVID-19 from a tertiary single-center hospital between March and April 2020. Prognostic effects of variables on admission among patients who received intensive care unit (ICU) support and those who didn’t require ICU care were compared. Patients required ICU care (n = 46) were older (median, 71 vs. 43 years), with more underlying comorbidities (76.1% vs. 33.1%). ICU patients had lower lymphocytes, percentage of large unstained cell (%LUC), hemoglobin, total protein, and albumin, but higher leucocytes, neutrophils, neutrophil–lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), platelet-lymphocytes ratio (PLR), urea, creatinine, aspartate amino transferase (AST), lactate dehydrogenase (LDH), and D-dimer when compared with non-critically ill patients (p &lt; 0.001). A logistic regression model was created to include ferritin, %LUC, NLR, and D-dimer. %LUC decrease and D-dimer increase had the highest odds ratios (0.093 vs 5.597, respectively) to predict severe prognosis. D-dimer, CRP, and NLR had the highest AUC in the ROC analysis (0.896, 0.874, 0.861, respectively). The comprehensive analysis of clinical and admission laboratory parameters to identify patients with severe prognosis is important not only for the follow-up of the patients but also to identify the pathophysiology of the disease. %LUC decrease and D-dimer, NLR, and CRP increases seem to be the most powerful laboratory predictors of severe prognosis.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Albumins</subject><subject>Biomarkers - blood</subject><subject>Clinical Laboratory Techniques - methods</subject><subject>Coronavirus Infections - diagnosis</subject><subject>Coronavirus Infections - drug therapy</subject><subject>Coronavirus Infections - mortality</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 Testing</subject><subject>Creatinine</subject><subject>Critical Care - methods</subject><subject>Critical Illness</subject><subject>Dimers</subject><subject>Female</subject><subject>Ferritin</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Intensive Care Units</subject><subject>L-Lactate dehydrogenase</subject><subject>Laboratories</subject><subject>Lactate dehydrogenase</subject><subject>Lactic acid</subject><subject>Leukocytes</subject><subject>Leukocytes (neutrophilic)</subject><subject>Logistic Models</subject><subject>Lymphocytes</subject><subject>Male</subject><subject>Medical Records</subject><subject>Middle Aged</subject><subject>Monocytes</subject><subject>Pandemics</subject><subject>Parameter identification</subject><subject>Patients</subject><subject>Pneumonia, Viral - diagnosis</subject><subject>Pneumonia, Viral - drug therapy</subject><subject>Pneumonia, Viral - mortality</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Tertiary Care Centers</subject><subject>Turkey</subject><subject>Urea</subject><subject>Viral diseases</subject><subject>Young Adult</subject><issn>1567-5769</issn><issn>1878-1705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQtRCIlsIfIBSJC5dsx45jOxyQ0LZApZXKoeJqTZ1J8SprL3ayUv--3m4p0AMnW2_evJk3j7G3HBYcuDpdL3yY_Ga7ECD2kOpaeMaOudGm5hra5-XfKl23WnVH7FXOa4CCS_6SHTWi453g-pitlqMP3uFYYeirEa9jwimm22ognOZEuYpDtbz8cXFW8-5j9T1R710h3OOZdpSo2qZ4E2L2-TV7MeCY6c3De8KuvpxfLb_Vq8uvF8vPq9q1rZ5qrZwSaLSUUrWNEAqHDpRRAApaggaxlyhQdIZ6lIhD3yCAkYorSYNoTting-x2vt5Q7yhMCUe7TX6D6dZG9PbfSvA_7U3cWS0NdAaKwIcHgRR_zZQnu_HZ0ThioDhnK6QUQpQr72e9f0JdxzmF4q6wtDFle-gKSx5YLsWcEw2Py3Cw-7Ts2h7Ssvu07CGt0vbubyOPTb_j-eOUyjV3npLNzlNwJYREbrJ99P-fcAfOuaar</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bastug, Aliye</creator><creator>Bodur, Hurrem</creator><creator>Erdogan, Serpil</creator><creator>Gokcinar, Derya</creator><creator>Kazancioglu, Sumeyye</creator><creator>Kosovali, Behiye Deniz</creator><creator>Ozbay, Bahadır Orkun</creator><creator>Gok, Gamze</creator><creator>Turan, Isil Ozkocak</creator><creator>Yilmaz, Gulsen</creator><creator>Gonen, Canan Cam</creator><creator>Yilmaz, Fatma Meric</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201101</creationdate><title>Clinical and laboratory features of COVID-19: Predictors of severe prognosis</title><author>Bastug, Aliye ; Bodur, Hurrem ; Erdogan, Serpil ; Gokcinar, Derya ; Kazancioglu, Sumeyye ; Kosovali, Behiye Deniz ; Ozbay, Bahadır Orkun ; Gok, Gamze ; Turan, Isil Ozkocak ; Yilmaz, Gulsen ; Gonen, Canan Cam ; Yilmaz, Fatma Meric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-76c62a87444653226af9068600605e03aad4a2a298eda4aafd3a00846164ef23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Albumins</topic><topic>Biomarkers - blood</topic><topic>Clinical Laboratory Techniques - methods</topic><topic>Coronavirus Infections - diagnosis</topic><topic>Coronavirus Infections - drug therapy</topic><topic>Coronavirus Infections - mortality</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 Testing</topic><topic>Creatinine</topic><topic>Critical Care - methods</topic><topic>Critical Illness</topic><topic>Dimers</topic><topic>Female</topic><topic>Ferritin</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Intensive Care Units</topic><topic>L-Lactate dehydrogenase</topic><topic>Laboratories</topic><topic>Lactate dehydrogenase</topic><topic>Lactic acid</topic><topic>Leukocytes</topic><topic>Leukocytes (neutrophilic)</topic><topic>Logistic Models</topic><topic>Lymphocytes</topic><topic>Male</topic><topic>Medical Records</topic><topic>Middle Aged</topic><topic>Monocytes</topic><topic>Pandemics</topic><topic>Parameter identification</topic><topic>Patients</topic><topic>Pneumonia, Viral - diagnosis</topic><topic>Pneumonia, Viral - drug therapy</topic><topic>Pneumonia, Viral - mortality</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Tertiary Care Centers</topic><topic>Turkey</topic><topic>Urea</topic><topic>Viral diseases</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastug, Aliye</creatorcontrib><creatorcontrib>Bodur, Hurrem</creatorcontrib><creatorcontrib>Erdogan, Serpil</creatorcontrib><creatorcontrib>Gokcinar, Derya</creatorcontrib><creatorcontrib>Kazancioglu, Sumeyye</creatorcontrib><creatorcontrib>Kosovali, Behiye Deniz</creatorcontrib><creatorcontrib>Ozbay, Bahadır Orkun</creatorcontrib><creatorcontrib>Gok, Gamze</creatorcontrib><creatorcontrib>Turan, Isil Ozkocak</creatorcontrib><creatorcontrib>Yilmaz, Gulsen</creatorcontrib><creatorcontrib>Gonen, Canan Cam</creatorcontrib><creatorcontrib>Yilmaz, Fatma Meric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International immunopharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastug, Aliye</au><au>Bodur, Hurrem</au><au>Erdogan, Serpil</au><au>Gokcinar, Derya</au><au>Kazancioglu, Sumeyye</au><au>Kosovali, Behiye Deniz</au><au>Ozbay, Bahadır Orkun</au><au>Gok, Gamze</au><au>Turan, Isil Ozkocak</au><au>Yilmaz, Gulsen</au><au>Gonen, Canan Cam</au><au>Yilmaz, Fatma Meric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical and laboratory features of COVID-19: Predictors of severe prognosis</atitle><jtitle>International immunopharmacology</jtitle><addtitle>Int Immunopharmacol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>88</volume><spage>106950</spage><epage>106950</epage><pages>106950-106950</pages><artnum>106950</artnum><issn>1567-5769</issn><eissn>1878-1705</eissn><abstract>•Decrease in %LUC (Large unstained cells%) value predicts severe SARS-CoV-2 infection.•Laboratory parameters associated with the severe illness in COVID-19 patients.•The optimal cut-off values of relevant parameters to define risk of critical illness.•The relevant coagulation abnormalities to predict severe patients with COVID-19. Coronavirus disease 2019 (COVID-19) emerged first in December 2019 in Wuhan, China and quickly spread throughout the world. Clinical and laboratory data are of importance to increase the success in the management of COVID-19 patients. Data were obtained retrospectively from medical records of 191 hospitalized patients diagnosed with COVID-19 from a tertiary single-center hospital between March and April 2020. Prognostic effects of variables on admission among patients who received intensive care unit (ICU) support and those who didn’t require ICU care were compared. Patients required ICU care (n = 46) were older (median, 71 vs. 43 years), with more underlying comorbidities (76.1% vs. 33.1%). ICU patients had lower lymphocytes, percentage of large unstained cell (%LUC), hemoglobin, total protein, and albumin, but higher leucocytes, neutrophils, neutrophil–lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), platelet-lymphocytes ratio (PLR), urea, creatinine, aspartate amino transferase (AST), lactate dehydrogenase (LDH), and D-dimer when compared with non-critically ill patients (p &lt; 0.001). A logistic regression model was created to include ferritin, %LUC, NLR, and D-dimer. %LUC decrease and D-dimer increase had the highest odds ratios (0.093 vs 5.597, respectively) to predict severe prognosis. D-dimer, CRP, and NLR had the highest AUC in the ROC analysis (0.896, 0.874, 0.861, respectively). The comprehensive analysis of clinical and admission laboratory parameters to identify patients with severe prognosis is important not only for the follow-up of the patients but also to identify the pathophysiology of the disease. %LUC decrease and D-dimer, NLR, and CRP increases seem to be the most powerful laboratory predictors of severe prognosis.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32919217</pmid><doi>10.1016/j.intimp.2020.106950</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-5769
ispartof International immunopharmacology, 2020-11, Vol.88, p.106950-106950, Article 106950
issn 1567-5769
1878-1705
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7480980
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adolescent
Adult
Aged
Aged, 80 and over
Albumins
Biomarkers - blood
Clinical Laboratory Techniques - methods
Coronavirus Infections - diagnosis
Coronavirus Infections - drug therapy
Coronavirus Infections - mortality
Coronaviruses
COVID-19
COVID-19 Testing
Creatinine
Critical Care - methods
Critical Illness
Dimers
Female
Ferritin
Hemoglobin
Humans
Intensive Care Units
L-Lactate dehydrogenase
Laboratories
Lactate dehydrogenase
Lactic acid
Leukocytes
Leukocytes (neutrophilic)
Logistic Models
Lymphocytes
Male
Medical Records
Middle Aged
Monocytes
Pandemics
Parameter identification
Patients
Pneumonia, Viral - diagnosis
Pneumonia, Viral - drug therapy
Pneumonia, Viral - mortality
Predictive Value of Tests
Prognosis
Regression analysis
Regression models
Retrospective Studies
ROC Curve
Tertiary Care Centers
Turkey
Urea
Viral diseases
Young Adult
title Clinical and laboratory features of COVID-19: Predictors of severe prognosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20and%20laboratory%20features%20of%20COVID-19:%20Predictors%20of%20severe%20prognosis&rft.jtitle=International%20immunopharmacology&rft.au=Bastug,%20Aliye&rft.date=2020-11-01&rft.volume=88&rft.spage=106950&rft.epage=106950&rft.pages=106950-106950&rft.artnum=106950&rft.issn=1567-5769&rft.eissn=1878-1705&rft_id=info:doi/10.1016/j.intimp.2020.106950&rft_dat=%3Cproquest_pubme%3E2442221012%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478822609&rft_id=info:pmid/32919217&rft_els_id=S156757692032292X&rfr_iscdi=true